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RESUMO	
  
Características geoquímicas e petrológicas de diques lamprófitos em 
Kalagalla intrudidas em rochas xistosas auríferas do cinturão de Ramagiri-
Penakacherla, no distrito de Anantapur, Andhra Pradesh, Índia. O  lamprófiro 
Kalagalla (KGL) é uma rocha melanocrática que exibe uma textura nodular 
típica na superfície. As micro-texturas e a mineralogia típica dos lamprófiros 
são obscurecidas pelo metamorfismo; no entanto, exibe textura porfirítica, 
nemato-granoblástica, representativa das fácies de xisto verde do 
metamorfismo. A rocha é cisalhada e possui vários glóbulos formados por 
agregados policristalinos de calcita (ocelli), envolvidas por plagioclásio 
coronítico sub-édrico e biotita, evidenciando sua origem manto-magmática. 
As assembleias minerais observadas em seções delgadas incluem anfibólio, 
plagioclásio, biotita, flogopita e calcita ocelli como essenciais, enquanto 
apatita, zircão, magnetita, ilmenita, calcopirita e pirita contendo Ni como 
fases acessórias. A investigação com SEM-EDS nos minerais acessórios 
revelou fases de sulfeto e silicato, como pirita livre de As, Ni-calcopirita 
hematitizada e minerais de Ni-As-Co indicativos de sulfetação associada aos 
veios auríferos de greenstones, além de silicatos como LREE-titanita 
parcialmente transformada em fases como leucoxeno e óxido como magnetita 
alterada para goethita em alguns locais. Com base na química mineral, 
geoquímica de rocha total, presença de anfibólio e dominância da 
plagioclásio, o KGL é classificada como uma variedade cálcio-alcalina em 
geral e como espessartita em particular, com afinidade shoshonítica. 
Nenhuma composição química anômala é observada na calcita ocelar. A 
titanita contendo LREE parece ser responsável pelo enriquecimento de 
LREE. O alto Mg # (77-79), Ni (153-162 ppm) e Cr (380-470 ppm) dão 
suporte a uma fonte mantélica. A ausência de anomalia de Eu reflete a falta 
de fracionamento do plagioclásio. A alta relação Zr / Hf (163-202) indica 
ausência de contaminação crustal e contribuição de carbonato magmático na 
fonte para formar ocelos como produto da imiscibilidade tardia de líquido 
silicato-carbonato líquido no mecanismo de segregação. Os padrões de traços 
e de REE (ƩREE: 326-343 ppm, LREE> HREE) indicam envolvimento de 
granada residual na fonte presumivelmente enriquecida em flogopita em um 
ambiente "relacionado à subducção". 
Palavras-chave: Lamprófiros, alcalino-calcário, espessartito, shoshonítico, 
carbonato magmático ocelli, subducção, cinturão de xisto Ramagiri-
Penakacherla 
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1. INTRODUCTION 
 

In recent times, the study of lamprophyres 1	
  
has attracted the attention of petrologists as a 2	
  
tool to unlock the information pertaining to the 3	
  
crustal evolution, tectonics and magmatism; in 4	
  
India these rocks have helped in understanding 5	
  
the geotectonic and magmatic evolution of the 6	
  
Eastern Dharwar Craton (EDC). Lamprophyres 7	
  
are a part of mantle-derived potassic to 8	
  
ultrapotassic magmatism, a typical feature of 9	
  
collisional orogens and oceanic subduction 10	
  
zones. Lamprophyres carry vast information 11	
  
concerning chemical and mineralogical 12	
  
conditions of the uppermost mantle. 13	
  
Lamprophyres are porphyritic rocks 14	
  
comprising phenocrysts of mafic minerals and 15	
  
apatite embedded in a groundmass that has the 16	
  
same composition of early crystallised mineral 17	
  
phases (e.g. phlogopite, olivine, amphibole, 18	
  
clinopyroxene and apatite) along with alkali 19	
  
feldspar and/or plagioclase. As recommended 20	
  
by the International Union of Geological 21	
  

Sciences (IUGS), the lamprophyres are 22	
  
classified into three categories: (i) alkaline 23	
  
(e.g. STOPPA et al. 2014), (ii) calc-alkaline 24	
  
(e.g. GARZA et al. 2013), and (iii) ultramafic 25	
  
(e.g. NASIR 2016). Genetically, lamprophyre 26	
  
rocks are referred to as ultramafic, mafic 27	
  
and/or intermediate rocks that intrude the 28	
  
basement at shallow crustal levels and occur in 29	
  
the form of plugs, dykes or sills (ROCK 1991). 30	
  
In southern India, occurrences of a variety of 31	
  
mantle-derived rocks like lamprophyres, 32	
  
lamproites, kimberlites and their entrained 33	
  
xenolith cargo have been utilized as clues to 34	
  
interpret the nature and evolution of the sub- 35	
  
continental lithospheric mantle (SCLM) 36	
  
beneath the EDC (e.g. CHALAPATHI RAO 37	
  
2004, 2007, 2013; CHAKRABARTI et al. 38	
  
2007; DONGRE et al. 2015; PANDEY et al. 39	
  
2017; PANDEY et al. 2017, 2018).   40	
  

All the three categories of lamprophyres are 41	
  
reported from different domains of the Indian 42	
  

ABSTRACT	
  
Geochemical and petrological characteristics of lamprophyre dykes at 
Kalagalla intruded into the auriferous schistose rocks of the Ramagiri-
Penakacherla Schist Belt, Anantapur district, Andhra Pradesh, India are 
presented here. The Kalagalla lamprophyre (KGL) is a melanocratic rock 
exhibiting typical knobby or pustular texture on the surface. The micro-
textures and mineralogy typical of lamprophyres are obscured by 
metamorphism; however, it exhibits porphyritic, nemato-granoblastic texture 
representative of greenschist facies of metamorphism. The rock is sheared 
and possesses several globules formed by polycrystalline aggregates of 
calcite rimmed by coronitic subhedral plagioclase and biotite, evidencing its 
mantle-magmatic origin. The mineral assemblages noticed in thin-sections 
include amphibole, plagioclase, biotite, phlogopite and calcite ocelli as 
essential while apatite, zircon, magnetite, ilmenite, Ni-bearing chalcopyrite 
and pyrite as accessory phases. The SEM-EDS investigation on the accessory 
minerals revealed accessory sulphide and silicate phases like As-free pyrite, 
haematitised Ni-bearing chalcopyrite and Ni-As-Co- minerals indicative of 
sulphidation associated with greenstone auriferous lodes, along with silicates 
like LREE-bearing titanite partially transformed into leucoxene and oxide 
phases like magnetite altered to goethite at places. Based on mineral 
chemistry, whole rock geochemistry, presence of amphibole and dominance 
of plagioclase, the KGL is classified as a calc-alkaline variety in general and 
as spessartite in particular possessing shoshonitic affinity. No anomalous 
chemical composition is noticed in the ocellar calcite. The LREE-bearing 
titanite appears to be the contributor of LREE enrichment. The high Mg# (77-
79), Ni (153-162 ppm) and Cr (380-470 ppm) support a mantle source. The 
absence of Eu anomaly reflects lack of plagioclase fractionation. The high 
Zr/Hf ratio (163-202) indicates absence of crustal contamination and 
contribution of magmatic carbonate at the source to form ocelli as product of 
late-stage liquid silicate-carbonate immiscibility of segregation mechanism. 
The trace and REE patterns (ƩREE: 326-343 ppm, LREE>HREE) indicate 
involvement of residual garnet at the source presumably enriched in 
phlogopite in a ‘subduction-related’ environment.  
Keywords: Lamprophyre, calc-alkaline, spessartite, shoshonitic, magmatic 
carbonate ocelli, subduction, Ramagiri-Penakacherla Schist Belt. 



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  

3 

shield. Lamprophyres occur in different kinds 1	
  
of lithological, tectonic, geochronological and 2	
  
cratonic domains in India (Fareeduddin and 3	
  
Mitchell 2012) and greenstone belts are not an 4	
  
exception.  Pandey et al. (2018) have reported 5	
  
mineralogical, geochemical and isotopic 6	
  
characteristics of three lamprophyre dykes 7	
  
occurring in Kadiri Schist Belt (KSB). The 8	
  
KSB contains Au values ranging from 25 to 9	
  
2800 ppb in a rhyodacite unit at very few 10	
  
places (RAMAMURTHY; 11	
  
ANANDAMURTHY 1994).  However, 12	
  
economic quantities of gold in the KSB are 13	
  
apprehensive due to the presence of different 14	
  
lithological conditions such as dominance of 15	
  
felsic volcanics (DEY et al. 2013, 2014), 16	
  
absence of schistose rocks (chlorite schist, 17	
  
mafic volcanics), structural loci, and the 18	
  
appropriate type of hydrothermal quartz veins 19	
  
as in the case of other economically 20	
  
mineralised schist belts of the Dharwar Craton. 21	
  
Lamprophyres were also reported from other 22	
  
auriferous schist belts of India such as 23	
  
Nuggihalli Schist Belt (NSB) (SUGAVANAM 24	
  
et al. 1994). Furthermore, several 25	
  
lamprophyres in supracrustal belts have been 26	
  
brought into light through petrological 27	
  
investigations. These include lamprophyres at 28	
  
Jungel (SRIVASTAVA ; CHALAPATHI 29	
  
RAO 2007) and Chitrangi (SRIVASTAVA 30	
  
2013) within the Mahakoshal Supracrustal Belt 31	
  
(MSB), central India. More than a hundred 32	
  
lamprophyre occurrences have been reported 33	
  
in the Prakasam Alkaline Province (PAP) and 34	
  
also along the margins of the Cuddapah basin 35	
  
(LEELANANDAM; RATNAKAR 1980; 36	
  
SUBRAHMANYAM et al. 1987; 37	
  
RATNAKAR et al. 1995, 1996; 38	
  
MADHAVAN et al. 1992, 1998; RATHNA et 39	
  
al. 2000; VIJAYA KUMAR; RATHNA, 2008; 40	
  
MESHRAM; VENKATESWARA RAO, 41	
  
2009; MESHRAM et al. 2015; ADHIKARY 42	
  
2017). However, two of the six dyke 43	
  
occurrences reported as lamprophyres at 44	
  
Kalwakurty (MESHRAM; 45	
  

VENKATESWARA RAO 2009) were recently 46	
  
reclassified as pyroxenites (GIRI et al. 2019). 47	
  
In the Wajrakarur Kimberlite Field (WKF) and 48	
  
its environs in Anantapur district, Andhra 49	
  
Pradesh, several lamprophyres were located by 50	
  
the Geological Survey of India (GSI) at 51	
  
Udiripikonda, Sivarampet, Nagireddypalli, 52	
  
Kalagalla and Korrakodu (SHIVANNA et al. 53	
  
2002). All these occurrences together with 54	
  
other related rock types, in and around the 55	
  
Cuddapah basin, constitute a regional tectonic 56	
  
environment which is described as Cuddapah 57	
  
Intrusive Province (CIP; MADHAVAN et al. 58	
  
1998; Fig.1).  In addition to these, several 59	
  
other solitary intrusive occurrences suspected 60	
  
to be lamprophyres exist within the WKF at 61	
  
Antarganga (14°45'50.18"N 77°25'29.44"E), 62	
  
Kammuru (14°44'44.11"N 77°29'1.48"E), 63	
  
Nimbagallu (14°53'25.98"N 77°12'32.68"E) 64	
  
and Vaddipalli (14°40'19.57"N 65	
  
77°27'26.59"E), which need additional field 66	
  
work and eventually warrant detailed 67	
  
investigations (KAMESWARA RAO; 68	
  
RAGHU PRASADA RAO, GSI, Hyderabad. 69	
  
pers. comm., 2009). Although the geochemical 70	
  
and petrological aspects of some of these 71	
  
lamprophyres namely Udiripikonda (PANDEY 72	
  
et al. 2016, 2017), Mudigubba (PANDEY et 73	
  
al. 2017), Sivarampet (PHANI et al. 2018, 74	
  
KHAN et al. 2018, PANKAJ et al., 2020), 75	
  
Kadiri (PANDEY et al. 2018), Korrakodu 76	
  
(RAGHUVAMSHI et al. 2019) are published 77	
  
to date, the geochemical and petrological 78	
  
behaviour of lamprophyre occurrence at 79	
  
Kalagalla is yet to be reported. Therefore, in 80	
  
this paper an attempt is made to present 81	
  
primary information pertaining to field aspects, 82	
  
mineralogical, geochemical and petrological 83	
  
characteristics of lamprophyre dykes occurring 84	
  
at Kalagalla (KGL- Kalagalla lamprophyre), 85	
  
within the gold-bearing Ramagiri- 86	
  
Penakacherla Schist Belt (RPSB), west of 87	
  
Cuddapah basin in Anantapur district, Andhra 88	
  
Pradesh. 89	
  

	
  
1.1. LAMPROPHYRES ASSOCIATED WITH AURIFEROUS/ORE-BEARING GREENSTONE BELTS	
  
	
  

Several lamprophyres have been reported 1	
  
worldwide as occurring in association with 2	
  
gold-bearing greenstone belts (ASHLEY et al. 3	
  
1994; MÜLLER; GROVES 2019). Such 4	
  
lamprophyres have an intimate association 5	
  
with the auriferous lodes and are regarded as 6	
  
indicators of greenstone hosted gold 7	
  
mineralisation. Many workers have elucidated 8	
  

that an extremely close genetic relation exists 9	
  
between calc-alkaline (shoshonitic) 10	
  
lamprophyres and mesothermal gold deposits 11	
  
of several greenstone belts across the globe 12	
  
(ROCK et al. 1989; TAYLOR et al. 1994; 13	
  
ASHLEY et al. 1998). Archaean greenstone 14	
  
belts comprise a variety of bimodal 15	
  
metavolcanics with variable types of clastic 16	
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sediments and volcanic to sub-volcanic rocks 1	
  
such as tholeiitic basalt, komatiite, arc-related 2	
  
basalt, boninite, adakite, siliceous high Mg 3	
  
basalt and lamprophyre. These rocks are 4	
  
significant in providing clues on geodynamic 5	
  
mechanisms of earth’s evolutionary history 6	
  
(CURRIE; WILLIAMS 1993; CONDIE, 1994; 7	
  
NAQVI et al. 2006; POLAT; KERRICH, 8	
  
2001; SRIVASTAVA, 2008, 2013; 9	
  
SRIVASTAVA et al. 2004; ANHAEUSSER, 10	
  
2014).  11	
  

It is well-known that, in addition to their 12	
  
association with gold mineralization, 13	
  
Precambrian lamprophyres act as geological 14	
  
marker horizons in gold exploration 15	
  
(WYMAN; KERRICH 1988, PERRING et al. 16	
  
1989, KWELWA 2017; KERRICH, 1986; 17	
  
ROCK; GROVES 1988; KERRICH; 18	
  
WYMAN 1994; DUBE et al. 2004). In the 19	
  
Superior Province of Canada, the gold 20	
  
mineralisation was originated in deep sources 21	
  
and emplaced along a major deep-seated 22	
  
structure that hosts volatile-rich lamprophyres. 23	
  
Here the gold mineralisation is related to a 24	
  
common tectonic regime, however from 25	
  
different source regions (WYMAN; 26	
  
KERRICH 1988, SIMS; DAY 1992). A review 27	
  
of lamprophyres associated with auriferous 28	
  
schist belts is presented in Table 1. In this 29	
  
context, the lamprophyre under present study 30	
  
attains significance to understand the 31	
  
geological evolution of the area under study. 32	
  

Owing to the close spatial association 33	
  
between lamprophyre dykes and gold 34	
  
mineralization, devolatilisation of shoshonitic 35	
  

lamprophyre magma during crystallization has 36	
  
been postulated as a possible source of gold in 37	
  
orogenic lode deposits (ROCK; GROVES 38	
  
1988; ROCK et al. 1988, 1989). This type of 39	
  
association is observed in Archaean greenstone 40	
  
terranes (KERRICH; WYMAN 1994) and in 41	
  
famous gold mines such as ‘Golden Mile’ 42	
  
(MUELLER et al. 1988; MCNAUGHTON et 43	
  
al. 2005) and ‘New Celebration’ (WILLIAMS 44	
  
1994).  45	
  

Lamprophyres are neither intrinsically rich 46	
  
in gold mineralisation nor they are 47	
  
volumetrically significant in orogenic gold 48	
  
deposits. However, their temporal and spatial 49	
  
relationship is considered to reflect formation 50	
  
in a common geodynamic setting (KERRICH; 51	
  
WYMAN 1994) in orogenic lode gold 52	
  
deposits, rather than a viable source for gold 53	
  
mineralisation as in the case of Darlot deposit 54	
  
(KENWORTHY; HAGEMANN 2005). 55	
  
Furthermore, association of lamprophyres and 56	
  
rare metal- rare earth elements (RM-REE), Pb- 57	
  
Zn, Sb-Hg, Sn-W, Sn-sulphide, Ag-Sb 58	
  
mineralisation has been emphasized by several 59	
  
workers (ŠTEMPROCK; SEIFERT 2011 and 60	
  
references therein).  It should be noted that the 61	
  
shoshonitic lamprophyres are reported to 62	
  
contain diamonds also as seen in the case of 63	
  
Wawa region, Canada (LEFEBVRE et al. 64	
  
2005). Hence, shoshonitic lamprophyres are 65	
  
significant not only for understanding the 66	
  
tectonics and magmatic evolution of the 67	
  
continental masses but also significant from 68	
  
the economic perspective (e.g. SCARROW et 69	
  
al. 2011). 70	
  

	
  
2. GEOLOGICAL SETTING AND FIELD RELATIONS	
  
	
  

The Dharwar craton is composed of 1	
  
granites, gneisses of Archaean age with 2	
  
numerous greenstones, mafic and felsic 3	
  
intrusions of Proterozoic age. The craton also 4	
  
includes sedimentary depositional domains 5	
  
such as Cuddapah, Kurnool, Bhīma and 6	
  
Kaladgi basins comprising a variety of clastic 7	
  
and non-clastic rocks of Proterozoic age 8	
  
(RAMAKRISHNAN; VAIDYANATHAN 9	
  
2008). The Archaean granitic rocks belong to 10	
  
the trondhjemite- tonalite- granodiorite (TTG) 11	
  
suites which are collectively termed as the 12	
  
Peninsular Gneissic Complex (PGC). The 13	
  
Dharwar craton is divided into two prominent 14	
  
domains namely the Eastern Dharwar Craton 15	
  
(EDC) and the Western Dharwar Craton 16	
  
(WDC) distinctly separated by the Chitradurga 17	
  

Shear Zone associated with mylonite, located 18	
  
at the eastern extremity of Chitradurga Schist 19	
  
Belt, which includes the linearly, nearly NS- 20	
  
trending Closepet granite intrusion 21	
  
(SWAMINATH et al. 1976; FRIEND; 22	
  
NUTMAN 1991). The WDC is made up of 23	
  
gneisses and greenstones of 3.0 to 3.3 Ga age, 24	
  
with very few 2.5 Ga granites, while the EDC 25	
  
is made up of younger (2.7 to 3.0 Ga) 26	
  
lithological units with widespread elongated 27	
  
plutons of Late Archaean granitoids (MOYEN 28	
  
et al. 2003; Fig. 1a). The EDC comprises 29	
  
several linear schist belts named after the 30	
  
nearest major location such as Ramagiri- 31	
  
Penakacherla, Kadiri, Jonangiri, Julakalva, 32	
  
Gadwal and Peddavura. 33	
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The RPSB is a part of Ramagiri-Hungund 1	
  
Schist Belt extending for about 180 km 2	
  
dominantly composed of pillowed basaltic 3	
  
rocks, felsic volcanics, volcanoclastites, 4	
  
metandesites and gabbros, banded iron 5	
  
formations, conglomerates, hornfelsed grey- 6	
  
wackes and  phyllites  with intrusions of 7	
  
ultramafics and syn to late-tectonic younger 8	
  
potassic granites and granodiorites 9	
  
(RAMAKRISHNAN; VAIDYANATHAN 10	
  
2008). All these litho-units are tightly folded 11	
  
and have experienced upper greenschist to 12	
  
lower amphibolite facies of metamorphism, 13	
  
with basalts retaining pillow structures 14	
  
(MANIKYAMBA et al. 2004). The lithologic 15	
  
units display a N-S to NNW-SSE trend, with a 16	
  
width ranging from 1.5 to 8 km. Mylonite 17	
  
zones occur as margins on either sides of this 18	
  
linear schist belt. The favourable host for gold 19	
  
mineralisation in Ramagiri Gold Field is the 20	
  
schistose pillowed metabasalt (VASUDEV 21	
  
2009). The litho-units in the northern part of 22	
  
the RPSB at Penakacherla are well exposed. 23	
  
The metamorphism and deformation under 24	
  
NE-SW compression associated with the 25	
  
Archaean subduction process transformed 26	
  
metavolcanics into amphibolites and 27	
  
intermediate to felsic volcanics into quartz 28	
  
micaschists. The prolonged compression has 29	
  
generated a 50-150 km wide shear zone 30	
  
consisting of mafic phyllonites. The gold- 31	
  
bearing sulphides occur in sheared grey to 32	
  
smoky quartz veins, in association with 33	
  
carbonates, emplaced within quartz-chlorite- 34	
  
sericite or quartz-sericite schist. These are 35	
  
sheared and altered products of parent 36	
  
andesitic lava at a late stage of folding where 37	
  
silica was released. The localisation of gold 38	
  
occurs in the first generation of narrow ductile 39	
  
shear zones where sericitisation is a common 40	
  
feature of alteration. The early-formed quartz 41	
  
veins, which underwent shearing are 42	
  
favourable for gold mineralization, with higher 43	
  
concentration in synclinal troughs (VASUDEV 44	
  
2009). The metabasalts from RPSB have been 45	
  
dated at 2746±64 Ma by Pb-Pb methods 46	
  
(ZACHARAIAH et al. 1996), which is 47	
  
consistent with SHRIMP U-Pb zircon ages of 48	
  

metarhyolites (2658±14 Ma; NUTMAN et al. 49	
  
1996).   50	
  

The study area forms a part of the WKF, 51	
  
wherein more than 45 kimberlites and olivine 52	
  
lamproites (SHAIKH et al., 2016) and more 53	
  
than six lamprophyres emplaced into the 54	
  
granitoid gneissic country-rock are known. 55	
  
The WKF emplaced with a variety of 56	
  
Kimberlite Clan Rocks (KCR) offers a unique 57	
  
geological set up to understand the deep- 58	
  
mantle mechanisms and large-scale 59	
  
geodynamic processes. In recent times, several 60	
  
intrusions which were hitherto believed to be 61	
  
Group-I kimberlites are reclassified as olivine 62	
  
lamproites (CHALAPATHI RAO et al., 2019). 63	
  
Geomorphologically, the study area is a rugged 64	
  
pediplain-pediment-inselberg complex traver- 65	
  
sed by linear ridges. The KGL location is 66	
  
situated at about 3 km ENE of Kalagalla 67	
  
village (14°48'51.58"N 77°25'6.18"E) (Fig.1a). 68	
  
The lamprophyre dykes are exposed in the 69	
  
shaft wall of an ancient gold mine in the form 70	
  
of two to three bands with an average width 71	
  
ranging from 10 to 20 cm, intruding into the 72	
  
chlorite schists of RPSB (Fig.1b). However, 73	
  
the thick colluvial cover obscures the true trace 74	
  
and dimension of the dykes. The intrusion is 75	
  
sheared and shows banded structure. The rock 76	
  
is free from crustal xenoliths and exhibits 77	
  
pitted surfaces showing knobby or pustular 78	
  
texture due to removal of vulnerable minerals 79	
  
by weathering (Fig.1c and d). The rock 80	
  
contains identifiable carbonate ocelli (1-2 mm) 81	
  
and sporadic disseminations of sulphides 82	
  
(pyrite). The host rock of the KGL, chlorite 83	
  
schist is a dominant rock type in the central 84	
  
part of the RPSB possessing a NNW-SSE 85	
  
strike with a dip of 65o to 70o due SW. It is 86	
  
flanked by schistose metabasalts on either side. 87	
  
The chlorite schist is also traversed by a 88	
  
number of grey quartz veins hosting the main 89	
  
gold-bearing sulphide mineralization, trending 90	
  
in N55oW-S55oE to N65oW-S65oE direction. 91	
  
Specks of metallic sulphide (pyrite) crystals 92	
  
are also observed within the host-rock 93	
  
metabasalts of RPSB. Ferruginous quartzites 94	
  
are also found to be associated with chlorite 95	
  
schists as discontinuous bands of 15 to 20 96	
  
meter width for a length of 5 to 12 meters. 97	
  

	
  
3. SAMPLING, ANALYSES AND DATA USED 
	
  

Detailed field traverses were conducted 1	
  
during the years 2016-2017 to locate the KGL 2	
  
based on GSI maps. The lamprophyre samples 3	
  
were collected from the dumps piled up from 4	
  

the abandoned excavation for gold, as the shaft 5	
  
was unsafe to be sampled. Six fresh samples of 6	
  
lamprophyre were collected and analyzed for 7	
  
petrography and geochemistry. Several thin- 8	
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sections were made at Gita Laboratories, 1	
  
Kolkata and studied under a polarizing 2	
  
microscope (Leica DM750P) at the 3	
  
Department of Geology, University College of 4	
  
Science (Saifabad), Osmania University, 5	
  
Hyderabad. The major, trace and rare earth 6	
  
element concentrations were determined using 7	
  
standard digestion techniques at Shiva 8	
  
Analyticals (India) Pvt. Limited, Bangalore, 9	
  
deploying XRF and ICP-MS and ICP-OES. 10	
  
Analyses of certified standards and repetitive 11	
  

analyses were also conducted to demonstrate 12	
  
the accuracy and precision of determination for 13	
  
major, trace and REE concentrations. All the 14	
  
samples were crushed and pulverized carefully 15	
  
in tungsten carbide mortar adopting standard 16	
  
equipment and procedures. The various 17	
  
geochemical indices were calculated using a 18	
  
software programme developed by Prof. Kurt 19	
  
Hollocher, Geology Department, Union 20	
  
College, Schenectady, New York, USA.	
   21	
  

	
  

	
  
Figure 1 

a) General geological map showing location of Kalagalla lamprophyre (KGL) within the Wajrakarur kimberlite field, showing 
lamprophyre and kimberlite occurrences (modified after Nayak and Kudari 1999). Grey stars indicate lamprophyres of 

Korrakodu (KKL), Sivarampet (SPL) and Udiripikonda (UKL). The KGL is shown as a red star. Inset: Regional geological map of 
the Dharwar Craton with kimberlite fields (modified after Ravi et al. 2009). Abbreviations: 1. Location of Prakasam Alkaline 
Province, 2. hypothetical boundary of Cuddapah Intrusive Province. B-Bayyaram lamprophyre, CB-Cuddapah basin, CBF- 

Chitradurga Boundary Fault, CG-Closepet granite, EDC-Eastern Dharwar Craton, EGMB-Eastern Ghats Mobile Belt, K-Kadiri 
lamprophyre, M-Mudigubba lamprophyre, WDC-Western Dharwar Craton. Kimberlite/Lamproite Fields (KF/LF): NKF-

Narayanpet, RKF-Raichur, TKF-Timmasamudram, WKF-Wajrakarur, and KLF-Krishna, RLF- Ramadugu, NLF-Nallamala. (b) An 
old gold pit within the Ramagiri Penakacherla Schist Belt where the KGL (yellow dashed lines in the shaft roof) is located. 

Camera facing northeast. (c) Lamprophyre boulders piled up from the excavation (d) Hand specimen of lamprophyre showing 
pustular texture. Coin diameter=2.5 cm.  

	
  
	
  

In order to identify general composition and 1	
  
possible trace element anomalies in accessory 2	
  
mineral phases such as sulphides and silicates, 3	
  
scanning electron microscopy (SEM) images 4	
  
and energy dispersive spectroscopy (EDS) 5	
  
analyses were carried out using Oxford 6	
  

Scanning Electron Microscope located at the 7	
  
Laboratory of Electron Microscopy and X-ray 8	
  
Analysis (LAMARX), Faculty of 9	
  
Mathematics, Astronomy, Physics and 10	
  
Computing of the National University of 11	
  
Córdoba, Argentina. For obtaining the semi- 12	
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quantitative data, the machine was operated at 1	
  
an accelerating voltage of 15 kV and a 2	
  
working distance of 8.5 mm and aperture size 3	
  
60 micrometers. The mineral chemistry of 4	
  
essential and accessory mineral phases has also 5	
  
been studied using electron probe 6	
  
microanalyser (EPMA, JEOL JXA 8230) with 7	
  
an accelerating voltage of 15 kV, a beam 8	
  
current of 10 nA and a beam diameter of 1µm 9	
  
at the LAMARX, Argentina. A number of 10	
  
standards such as diopside (Ca), peridot (Mg), 11	
  
FeS2 (Fe), orthoclase (K), rutile (Ti), NaCl 12	
  
(Na), apatite (P), CaSiO3 (Si) and kyanite (Al) 13	
  
were used for standardization. To ascertain the 14	
  
accuracy in determining the mineral chemistry, 15	
  
several repeat analyses were carried out. The 16	
  
counting time was 10s with an error <1%. 17	
  

The geochemical data of lamprophyres 18	
  
from various localities of the EDC and CIP 19	
  
such as Kellampalli (RATNAKAR et al. 20	
  
1996), Purimetla (MADHAVAN et al. 1998) 21	
  
Bayyaram (MESHRAM et al. 2015), 22	
  
Sivarampet (PHANI et al. 2018), and Kadiri 23	
  
(PANDEY et al. 2018), has been used for 24	
  
comparison purpose. The Sivarampet and 25	
  
Kadiri lamprophyres are in Anantapur district, 26	
  
15 km northwest and 118 km southeast of 27	
  
KGL respectively. The Purimetla and 28	
  
Kellampalli lamprophyres are situated on the 29	
  
eastern side of the Cuddapah basin, about 300 30	
  
km north east of the KGL. The Bayyaram 31	
  
lamprophyre is situated about 420 km north 32	
  
east in the north western margin of Cuddapah 33	
  
basin. 34	
  

	
  
4. PETROGRAPHY AND MINERALOGY 
	
  

Although the rock has a primary aphanitic 1	
  
texture that has undergone metamorphism, still 2	
  
faint textural signatures of lamprophyre such 3	
  
as porphyritic, globular or ocellar texture in 4	
  
ovoidal to amoeboidal shape are observed. Its 5	
  
aphanitic nature makes the identification of 6	
  
mineral assemblage challenging to classify this 7	
  
lamprophyre to a definite class. Euhedral 8	
  
magnetite and ilmenite crystals are observed 9	
  
within an indiscernible groundmass made up 10	
  
of biotite-phlogopite, amphiboles and chlorite. 11	
  
The groundmass shows grano-nematoblastic 12	
  
texture indicating the effect of metamorphism 13	
  
(Fig.2a). Circular arrangements of magnetite 14	
  
and amphiboles grains giving rise to ocellar 15	
  
texture are another diagnostic feature. The 16	
  
groundmass is at places chloritised, indicating 17	
  
low grade metamorphism. (Fig.2b). 18	
  
Plagioclase and biotite occur in mutual relation 19	
  
with carbonate ocelli reflecting their primary 20	
  
nature. Presence of some Fe- oxide/hydroxide 21	
  
presumed to be goethite appearing in blood red 22	
  
tinge and incipient colour zoning is noticed. 23	
  
The carbonate ocelli sometimes show 24	
  

glomeroporphyritic texture (Fig.2c). 25	
  
Occasionally euhedral grains of zircon are 26	
  
observed, within the metamorphosed 27	
  
groundmass. At places, hornblende is partially 28	
  
replaced by actinolite. Chlorite appears to be 29	
  
formed from alteration of amphibole. (Fig.2d). 30	
  
The SEM-EDS study also revealed that the 31	
  
carbonate ocelli are surrounded by plagioclase 32	
  
and biotite crystals in coronitic texture, 33	
  
supporting their magmatic nature. The 34	
  
plagioclase crystals show simple twin 35	
  
lamellae. The calcite grains in the ocelli show 36	
  
multiple sets of twinning and twinkling 37	
  
(Fig.2e). Euhedral xenocrystals of pyrite and 38	
  
titanite were observed (Fig. 2f and g). Pyrite 39	
  
crystals exhibit haematitisation in the borders 40	
  
(Fig. 2h). In overall observation, the KGL 41	
  
samples show porphyritic, grano-nematoblastic 42	
  
and glomeroporphyritic textures, and clearly 43	
  
appear to have undergone alteration as a 44	
  
consequence of low grade metamorphism. The 45	
  
overall mineral assemblage and abundance of 46	
  
plagioclase classifies the KGL as spessartite.  47	
  

	
  
4.1 EMPA RESULTS 
	
  

Some representative EPMA analyses were 1	
  
conducted on essential mineral phases and the 2	
  

 results are detailed below. 3	
  

	
  
4.1.2 FELDSPARS 
	
  

Feldspars occurring in the fine-grained 1	
  
groundmass (n=6) and those occurring at the 2	
  
peripheries of calcite ocelli (n=7) have been 3	
  
analysed. Results are shown in Table 2. The 4	
  

average composition of groundmass feldspars 5	
  
is Or1.84Ab86.26An11.90 while that of feldspars 6	
  
associated with calcite ocelli in the KGL is 7	
  
Or0.86Ab82.01An17.13, both ranging from albite to 8	
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oligoclase (Fig. 3). In general, the albitisation 1	
  
of calcic plagioclase reflects involvement of 2	
  
hydrothermal alteration which is a common 3	
  
characteristic of the lamprophyre clan of rocks 4	
  
(e.g. PANDEY et al. 2017). Though it was 5	
  
difficult to notice any albitisation in the 6	
  
microphenocrystic feldspars during 7	
  
petrographic study, the mineral chemistry 8	
  
indicates predominance of albite in 9	
  
composition.  The mineral chemistry of 10	
  
feldspars of calcite ocelli and the groundmass 11	
  
are similar suggesting magmatic origin, though 12	
  

plagioclase from ocelli textures is richer in 13	
  
molar anorthite (> 5 % in average molar An). 14	
  
The feldspars of Korrakodu lamprophyres 15	
  
show a range of composition from albite to 16	
  
orthoclase while those of Kadiri and 17	
  
Mudigubba show distinct dominance of 18	
  
plagioclase ranging from albite to labradorite 19	
  
(RAGHUVAMSHI et al. 2019). The 20	
  
predominance of plagioclase feldspars and 21	
  
absence of orthoclase (LE MAITRE 2002) 22	
  
classifies the KGL as spessartite type. 23	
  

	
  

	
  
Figure 2.  

Microphotographs showing textural and mineralogical features of Kalagalla lamprophyre. (a) Well developed euhedral magnetite 
and ilmenite crystals in metamorphosed matrix (PPL). (b) Globular arrangement of amphiboles and irregularly grown reddish 

brown goethite within the nemato-granoblastic fabric of lamprophyre (XPL). (c) Carbonate ocellum as a glomeroporphyritic 
aggregate. (d) Zircon crystal within the metamorphosed matrix. Chlorite derived after amphibole (PPL). (e) Calcite ocelli with 

minor amounts of biotite, plagioclase crystals and suspected phlogopite in the peripheries (XPL). (f) Euhedral pyrite crystal 
within the metamorphosed groundmass exhibiting nemato-granoblastic texture. Note tiny prisms of amphiboles and plagioclase 

associated with groundmass. (g) Euhedral titanite crystal associated with calcite ocelli within the lamprophyre groundmass 
(XPL). (h) SEM photograph of pyrite crystal with haematite border and a small grain of chalcopyrite. Abbreviations: Amp-

amphibole, Bt-biotite, Cal-calcite/carbonate, Chl-chlorite, Ccp-chalcopyirte, Gth-goethite, Gm-groundmass, Hem-haematite, Ilm-
ilmenite, Mag- magnetite, Phl-phlogopite, Pl-plagioclase, Py- As-free pyrite, Oc-ocellum, Ttn-Al-rich titanite, Zrn-zircon, PPL- 

under plane polarised light and XPL- under crossed Nicols.  
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Figure 3 
Classification of feldspars in the KGL. 1. sanidine, 2. anorthoclase, 3. albite, 4. oligoclase, 5. andesine, 6. labradorite, 7. 

bytownite, 8. anorthite. Fields for Kadiri (K), Korrakodu (Kr), Mudigubba (M) lamprophyres are from Raghuvamshi et al. (2019). 
	
  
4.1.2 AMPHIBOLES 
	
  

The amphiboles (n=8) of the KGL are 1	
  
classified as magnesio-hornblende and 2	
  
actinolite (Fig.4a) as per IMA classification 3	
  
(LEAKE et al. 1997). Even though the rock 4	
  
has undergone metamorphism, the primitive 5	
  
igneous character of amphibole is preserved in 6	
  
the KGL. Mineral chemistry of amphiboles of 7	
  
the KGL are shown in Table 3. Amphiboles 8	
  

show depletion in TiO2 (<0.3 wt%) which is in 9	
  
line with the calc-alkaline nature of the 10	
  
lamprophyre melt (Fig.4b). The presence of 11	
  
actinolite in the KGL is supportive to the low 12	
  
grade metamorphism that the lamprophyre has 13	
  
undergone. The composition of amphiboles of 14	
  
the KGL is similar to Kadiri and Mudigubba 15	
  
lamprophyres. 16	
  

	
  
4.1.3 MICAS 
	
  

Only biotite phenocrysts developed at the 1	
  
borders of calcite ocelli have been analyzed by 2	
  
EPMA. Results are shown in Table 4. The 3	
  
Mg# (0.41-0.46) of the KGL classifies the 4	
  
micas as biotite. The biotites show a very high 5	
  
Al2O3 content (15- 18 wt. %) clearly imparting 6	
  
calc-alkaline and shoshonitic character to the 7	
  

KGL (JIANG et al. 2010). Petrographic 8	
  
examination reveals that the chlorite is an 9	
  
alteration product of amphibole formed during 10	
  
metamorphism. The micas of KGL show 11	
  
similar geochemical behaviour to 12	
  
lamprophyres of Kadiri, Korrakodu, 13	
  
Udiripikonda and the CIP (Fig.5a and b). 14	
  

	
  
4.2 SEM-EDS ANALYSES OF ACCESSORY MINERAL PHASES 
	
  

The SEM-EDS study revealed that the 1	
  
proportion of oxides (e.g. magnetite and 2	
  
ilmenite) is more than sulphides (e.g. pyrite 3	
  

and chalcopyrite) among the opaque mineral 4	
  
assemblages.  5	
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Table 3. Representative chemical compositions of amphiboles of the KGL. 
 Grain1 Grain2  Grain3 Grain4 Grain5 Grain6 Grain7 Grain8 
SiO2 50.18 55.92 55.33 45.42 48.03 49.2 50 49 
TiO2 0.5 0 0.02 1.35 1.38 1.3 1.2 0.75 
Al2O3 2.92 0.5 1.1 8.76 6.77 4.5 3.4 2.3 
Cr2O3 0.16 0 0.14 0.15 0.18 0.14 0.16 0.21 
FeO 10.51 11.37 10.88 13.32 13 12.4 11.8 12.1 
MnO 0.16 0.48 0.1 0.15 0.12 0.13 0.11 0.67 
MgO 16.57 16.27 17.02 13.34 13.97 15.2 14.8 15.3 
CaO 12.39 12.92 13.29 12.64 12.57 12.3 12.6 12.4 
Na2O 0.59 0.12 0.12 1.65 0.82 0.13 0.56 0.5 
K2O 0.2 0.02 0 0 0.53 0.45 0.46 0.3 
Total  94.18 97.6 98 96.78 97.37 95.75 95.09 93.53 
Cations 24 (O) 24 (O) 24 (O) 24 (O) 24 (O) 24 (O) 24 (O) 24 (O) 
Si 7.817 8.343 8.212 7.040 7.355 7.608 7.774 7.774 
Ti 0.059 0 0.002 0.157 0.159 0.151 0.14 0.14 
Al 0.536 0.088 0.192 1.601 1.222 0.820 0.623 0.623 
Cr 0.02 0 0.016 0.018 0.022 0.017 0.02 0.02 
Fe2+ 1.369 1.419 1.35 1.727 1.665 1.604 1.534 1.534 
Mn 0.021 0.061 0.013 0.020 0.016 0.017 0.014 0.014 
Mg 3.847 3.618 3.765 3.082 3.188 3.503 3.429 3.429 
Ca 2.068 2.065 2.113 2.099 2.063 2.038 2.099 2.099 
Na 0.178 0.035 0.035 0.496 0.243 0.039 0.169 0.169 
K 0.04 0.004 0 0 0.104 0.089 0.091 0.091 
Total  15.955 15.632 15.699 16.241 16.037 15.886 15.894 15.894 
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 4 
Classification of amphiboles in the KGL. (a) Si (apfu) versus Mg# plot showing magnesio-hornblende nature. (b) SiO2 versus 

TiO2 plot showing calc-alkaline character. Fields for Kadiri (K) and Mudigubba (M) lamprophyres are from RAGHUVAMSHI et al. 
(2019). 
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             Table 4. Chemical composition of micas in the KGL. 
 Grain1 Grain2  Grain3 Grain4 Grain5 Grain6 Grain7 
SiO2 34.84 35.45 34.15 33.43 31.33 32.5 33 
TiO2 1.21 2.82 0.78 1.32 1.2 0.89 0.99 
Al2O3 17.79 16.16 18.17 18.64 18.7 15.8 17.8 
FeO 21.44 19.69 21.21 21.97 20.4 21.3 22 
MnO 0.35 0.26 0.37 0.42 0.34 0.29 0.31 
MgO 9.32 9.67 9.18 8.68 8.7 8.6 9.2 
CaO 0.18 0.98 0.27 0.06 0.78 0.33 0.67 
Na2O 0.01 0 0.02 0.03 0.04 0.01 0.01 
K2O 9.71 9.55 9.67 9.31 8.79 9.54 9.44 
Total 94.85 94.58 93.82 93.86 90.28 89.26 93.42 
Cations 11(O) 11(O) 11(O) 11(O) 11(O) 11(O) 11(O) 

Si 2.709 2.747 2.687 2.636 2.566 2.717 2.629 
Ti 0.071 0.164 0.046 0.078 0.074 0.056 0.059 
Al 1.630 1.476 1.685 1.732 1.805 1.557 1.671 
Fe+2 1.394 1.276 1.396 1.449 1.397 1.489 1.466 
Mn 0.023 0.017 0.025 0.028 0.024 0.021 0.021 
Mg 1.080 1.117 1.077 1.020 1.062 1.072 1.093 
Ca 0.015 0.081 0.023 0.005 0.068 0.030 0.057 
Na 0.002 0 0.003 0.005 0.006 0.002 0.002 
K 0.963 0.944 0.971 0.937 0.918 1.017 0.959 
Total 7.887 7.823 7.911 7.890 7.920 7.959 7.957 
Mg# 0.437 0.467 0.436 0.413 0.432 0.419 0.427 

 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 5 
Classification of micas of the KGL. (a) SiO2 versus Mg# diagram showing biotitic nature. (b) Mg# versus Al2O3 diagram 

distinguishing lamprophyre character based on micas.  Abbreviations of lamprophyres: AL- alkaline, CAL- calc-alkaline, UML- 
ultramafic. Fields for Cuddapah Intrusive Province (CIP), Kadiri (K), Karrakodu (Kr), Udiripikonda (U) are from PANDEY et al. 

(2018) 
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4.2.1 TITANATES 
 

Two types of titanites are identified in the 1	
  
KGL; an Al-rich variety (Fig. 6a and b) and a 2	
  
LREE and F-rich variety (Fig. 6c and d). These 3	
  
occur as irregular aggregates of 200 µm and 4	
  
100 µm diameter, respectively. The latter type 5	
  
of titanite is the principal carrier of LREE such 6	
  
as La, Ce and Nd in the KGL with 2.5, 3.4 and 7	
  
1.2 at. % and 12.7, 17.2 and 6.3 Ox. % , 8	
  

respectively. The F concentration is 9	
  
approximately estimated to be 10 at. %.  In 10	
  
general, the titanite crystallisation is generally 11	
  
favoured by Ca-rich metaluminous oxidised 12	
  
melts that possess an intermediate SiO2 content 13	
  
(FROST et al. 2000). The titanites are partially 14	
  
transformed into leucoxene. 15	
  

	
  
4.2.2 SULPHIDES AND OXIDES 
	
  

The sulphides in the KGL generally occur 1	
  
as products of hydrothermal activity. The 2	
  
sulphides include Ni-free chalcopyrite and 3	
  
associated Ni-Co-As unidentified mineral 4	
  
phases (Fig. 6e and f). Magnetite is found to be 5	
  
intergrown with ilmenite associated with minor 6	
  
quantities of anhedral Ni-rich chalcopyrite and 7	
  
Ni-As-Co minerals. The order of abundance is 8	
  
magnetite>ilmenite>>chalcopyrite>Ni-As-Co 9	
  
minerals. The presence of such sulphides is 10	
  
noticed in lamprophyres originated from 11	
  
mantle (>100 km) depths in subduction zones, 12	
  
continental rift settings and also as components 13	
  

of bimodal dike suites as in the case of 14	
  
hydrothermal Pb-Zn, Sb-Hg, Ag-Sb deposits 15	
  
(ROCK 1991; MAUGHAN et al. 2002, 16	
  
SINCLAIR 2007). Euhedral xenocrystals of 17	
  
pyrite occur as individual crystals as well as 18	
  
crystal aggregates ubiquitously in the KGL 19	
  
(Fig. 6g and h). The pyrite crystals 20	
  
occasionally occur as twinned aggregates. The 21	
  
grain borders are slightly haematitised 22	
  
indicating oxidation as visualised in the 23	
  
spectra. However, the pyrite is found to be As- 24	
  
free.  25	
  

	
  
4.2.3 OCELLAR CALCITE 
	
  

Ocellar calcite crystal aggregates of ovoidal 1	
  
to amoeboidal shape ubiquitously occur in the 2	
  
KGL. The calcite ocelli are bordered with 3	
  
plagioclase and biotite crystals in the 4	
  
peripheries forming coronitic structure (Fig.7a 5	
  
and b). No compositional anomalies were 6	
  

detected, however, feeble amounts of Cl (~0.2 7	
  
at. %) is noticed in the ocellar calcite. The 8	
  
mapping shows elements like Mg, Ca, Si, Al, 9	
  
O and Na (Fig.7a and b). The Si, Al and Na are 10	
  
probably due to contamination from 11	
  
neighbouring silicate phases. 12	
  

	
  
5. GEOCHEMISTRY AND PETROGENESIS 
	
  

The major element (Table 5), trace and rare 1	
  
earth element (REE) concentration data (Table 6) 2	
  
were used to decipher the geochemical and 3	
  
petrogenetic character of the KGL.  The 4	
  
geochemical data have been plotted in various 5	
  
geochemical diagrams along with average values 6	
  
of other EDC lamprophyres. The KGL is 7	
  
characterised by lower SiO2 (41.8-43.7 wt. %), 8	
  
lower MgO (6.8-7.6 wt. %), than the nearby 9	
  
lamprophyres at Udiripikonda (SiO2 45.2 and 10	
  
MgO 7.7 wt. %) and Kadiri (SiO2 53.9 and MgO 11	
  
8.5 wt. %). The KGL samples show highly 12	
  
potassic (shoshonitic) character with K2O/NaO 13	
  
ranging from 0.4-1.07. The Al2O3 and TiO2 14	
  
concentrations range from 12.8-13.4 wt. % and 15	
  
1.9-2.8, respectively. The CaO in the KGL 16	
  

samples ranges from 6.88 to 7.66 wt. % which is 17	
  
less than that of Udiripikonda (8.9 wt. %) and 18	
  
Kadiri (8.6 wt. %).  The considerable CaO 19	
  
concentration is attributed to the presence of 20	
  
ubiquitous calcite ocelli. The The Mg# of the 21	
  
KGL samples ranges from 77.2 to 78.9. The 22	
  
KGL displays a similar average major element 23	
  
concentration similar to the lamprophyres of the 24	
  
EDC and elsewhere in the world. In case of 25	
  
metamorphosed lamprophyres where 26	
  
metamorphism has been over-printed by gold- 27	
  
related alteration and deformation synchronous 28	
  
with gold deposition, the diagnostic textures are 29	
  
difficult to be detected. Nevertheless, their 30	
  
unique chemical composition still persists, as has 31	
  
also been indicated by Perring et al. (1989). 32	
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Figure 6 
SEM-EDS photographs and Energy Dispersive X-ray spectra of certain accessory minerals in the Kallagalla lamprophyre. (a) 
and (b) LREE rich titanite with spectra showing peaks of LREE (La, Ce and Nd). (c) and (d) Euhedral Al- rich titanite showing 
peaks of Al. (e) and (f) Unidentified Ni-Co-As sulphides. Oxygen peaks are not of sulphides but from the surrounding silicate 

phase.  (g) and (h) Well developed crystal of pyrite and its corresponding EDS spectra.  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 7 
SEM-EDS photograph showing (a) spatial distribution of elements in ocellar calcite. Mg (orange), Ca (pink), Si (cyan), Al (green) 

and O (red). (b) EDS spectra of ocellar calcite. 
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Table 5 - Whole rock major element analysis (wt.%) and normative geochemical indices of the Kalagalla lamprophyre.  

Sample# SML01 SML02 SML03 SML04 SML05 SML06 
SiO2 42.8 42.8 41.7 41.87 42.66 42.5 
TiO2 1.18 1.2 1.2 1.4 1.4 1.8 
Al2O3 9.02 11.8 12.2 10.3 10.25 11.3 
Fe2O3 10.6 9.5 11.01 10.56 9.97 9.95 
FeO 9.55 8.72 9.9 9.1 8.96 8.95 
MnO 0.18 0.17 0.17 0.19 0.19 0.21 
MgO 7.5 6.79 7.65 6.6 6.5 6.44 
CaO 6.25 6.6 5.78 6.66 5.43 6.46 
Na2O 1.1 0.9 0.89 1.75 1.23 0.89 
K2O 2.73 3 2.6 2.71 2.88 2.77 
P2O5 0.43 0.5 0.44 0.48 0.52 0.58 
LOI 8.52 7.87 6.33 8.4 8.44 7.89 
Total 99.83 99.79 99.8 99.99 98.47 99.72 

Fe3+/(Fet)  50 49.5 50 51.1 50 50 
Mg#  77.4 77.5 77.2 78.2 77.5 78.9 

Ca/(Ca+Na)  75.8 80.5 78.2 67.8 70.9 80 
Plagioclase An content 53.6 70.6 72.8 43.1 55.1 69.2 
Differentiation Index 39.9 47 46 43.4 45.1 46.8 

 
 
 
              Table 6. Whole rock trace and rare earth element (REE) analyses of the Kalagalla lamprophyre (ppm). 

Sample# KLG01 KLG02 KLG03 KLG04 KLG05 KLG06 
Sc 17.09 16.4 15.8 15.5 18.02 18.1 
V 147.1 133 121 145 144.3 123.1 
Cr 400 470 400 400 380 470 
Co 49.62 48.7 48.9 46.9 50.12 49.4 
Ni 159.86 159.7 162.3 160.1 158.5 153.5 
Cu 60.02 57 62 61.3 60.4 59.44 
Zn 110 98 102 104 98.9 96 
Ga 12.3 11.3 12.6 12.9 12.4 11.56 
Rb 86.81 87.8 87.6 86.3 85.8 86.5 
Sr 883.09 887.5 885.6 779.4 745 834.65 
Y 17.3 12.5 15.7 17.04 14.76 15.6 
Zr 335 332 267 289 331.2 332.8 
Nb 35.7 34.6 35.8 37.6 34.9 38.9 
Ba 500 900 900 900 900 1700 
Hf 1.68 1.76 1.4 1.77 1.89 1.65 
Ta 2.01 1.89 1.94 2.04 2.3 1.94 
Pb 6.14 5.8 6 5.44 6.21 6.02 
Th 3.13 2.89 2.78 2.67 3.1 3.03 
U 0.5 0.4 0.6 0.45 0.44 0.43 

Sample# KLG01 KLG02 KLG03 KLG04 KLG05 KLG06 
La 75.04 81.2 75.6 79.4 83.02 77.8 
Ce 152.08 146.8 154.3 151.44 148.4 149.4 
Pr 17.76 16.8 18.7 17.6 18.43 12.6 
Nd 62.45 58.9 45.7 58.9 62.3 56.8 
Sm 9.87 8.9 9.4 10.1 11.11 9.98 
Eu 2.69 2.76 1.98 2.65 2.87 2.77 
Gd 8.49 7.89 8.54 8.44 8.5 7.89 
Dy 0.94 1.4 1.1 0.98 1.3 1.02 
Er 4.22 3.88 4.2 3.98 3.77 4.18 
Yb 1.3 1.2 1.4 1.25 1.35 1.4 
Tb 0.94 1.01 1.1 1.2 0.95 0.95 
Ho 0.67 0.71 0.73 0.65 0.73 0.62 
Tm 0.19 0.21 2 0.18 0.17 0.22 
Lu 0.17 0.17 0.18 0.22 0.21 0.17 
ƩREE 336.79 331.83 324.93 336.99 343.11 325.8 
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In the Al2O3-Fe2O3-MgO ternary diagram, 1	
  
the KGL samples plot in the field designated 2	
  
for lamprophyres (Fig.8a). The calc-alkaline 3	
  
character of the KGL samples is clearly 4	
  
evident in the SiO2 and TiO2 diagram with 5	
  
similarities in geochemical character to other 6	
  
EDC lamprophyres taken for comparison 7	
  
(Fig.8b). The SiO2/10-CaO-TiO2*4 ternary 8	
  
diagram displays evident compositional 9	
  
affinity with calc-alkaline rocks (Fig.8c). The 10	
  

calc-alkaline character of the KGL samples is 11	
  
also reflected by the TiO2-Al2O3 diagram 12	
  
(Fig.8d). As a general phenomenon, the calc- 13	
  
alkaline magmatism reflects the chemical 14	
  
heterogeneity in the mantle caused by re- 15	
  
equilibration of sediments and oceanic crust 16	
  
interacting through subduction and provides a 17	
  
unique prospect to study crust-mantle 18	
  
interactions (STERN 2002). This concept 19	
  
appears to be true in case of KGL samples.  20	
  

	
  
	
  

	
  
	
  

Figure 8 
Major element variations of the Kalagalla lamprophyre in comparison with other occurrences of the Eastern Dharwar Craton. (a) 

Fe2O3-Al2O3-MgO (CORNELISSEN; VERWOERD 1975; KORNPROBST 1984).  (b) SiO2 versus TiO2 (ROCK 1991). Field for 
Mudigubba is taken from PANDEY et al. (2017). (c) SiO2-CaO-TiO2 (ROCK 1987). (d) TiO2 versus Al2O3 (LEFEBVRE et al. 

2005). 
	
  
	
  

The KGL samples exhibit shoshonitic 1	
  
character evidenced by various geochemical 2	
  
diagrams plotted using certain major elements. 3	
  
In the Na2O versus K2O diagram, the KGL 4	
  
samples show shoshonitic character like other 5	
  
lamprophyres. The Bayyaram and Kadiri 6	
  
lamprophyres show ultrapotassic and calc- 7	
  
alkaline character, respectively (Fig.9a). The 8	
  
shoshonitic affinity of the KGL samples is also 9	
  
supported by the SiO2 versus K2O diagram, 10	
  
which is consistent with that of lamprophyres 11	
  

of other areas. Although the KGL samples plot 12	
  
in the shoshonite field, they are close to the 13	
  
high calc-alkaline, high potassic region (Fig. 14	
  
9b). Further, the shoshonitic character is also 15	
  
supported by the biotite compositions. In the 16	
  
bivariate diagram involving SiO2 and total 17	
  
alkali (Na2O+K2O), the majority of the KGL 18	
  
samples straddle over the alkaline field (Fig. 19	
  
9c). The high potassic nature of the KGL 20	
  
samples is evidenced in the geochemical 21	
  
diagram of MgO versus K2O (Fig.9d). 22	
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Figure 9 

Alkalies versus silica and magnesium ratios of the Kalagalla and other lamprophyres of the region. (a) Na2O versus. K2O 
(ROCK 1987) (b) SiO2 versus K2O (PECCERILLO; TAYLOR 1976) (c) SiO2 versus Total alkalies. Abbreviations: AL- alkaline, 

UML- ultramafic, CAL- calc-alkaline lamprophyres; 1- picrobasalt, 2- basalt, 3- basaltic andesite, 4- andesite, 5- basanite, 6- 
trachyandesite (ROCK 1987). (d) MgO versus K2O (PECCERILLO; TAYLOR 1976). Symbols as in Figure 8. 

	
  
	
  

The increased values for Ba, Rb, Sr, K, Rb, 1	
  
Zr, Ti and Y with depleted Nb in the KGL 2	
  
samples demonstrates their calc-alkaline 3	
  
character, as seen in the Archaean 4	
  
metalamprophyre of Nuggihalli Schist Belt of 5	
  
the Dharwar craton (SUGAVANAM et al. 6	
  
1994). The concentrations of LILE (large ion 7	
  
lithophile elements) are relatively high in the 8	
  
KGL samples. The Ba concentration in KGL 9	
  
samples is high and ranges from 500 to 1700 10	
  
ppm while Sr ranges from 745 to 887 ppm. 11	
  
The Ba/Nb (~14 to 44 ppm) and Ba/La (~11 to 12	
  
22) ratios, except for the sample KLG01 13	
  
(Ba/La ~7 ppm) are high indicating a mantle 14	
  
source (RYAN et al. 1996; KEPEZHINSKAS 15	
  
et al. 2016). Lamprophyre intrusions act as 16	
  
geotectonic markers and offer clues on the 17	
  
geodynamic evolution (SCARROW et al. 18	
  
2011). The HFSE (high field strength 19	
  
elements) are indicators of arc related 20	
  
magmatism or subduction modified 21	
  
lithospheric mantle (WILSON, 1989; 22	
  
PEARCE 2008). In majority, the lamprophyres 23	
  
associated with the greenstone belts in the 24	
  
Archaean terrains show shoshonitic affinity 25	
  
highlighting a major role of subduction 26	
  

processes in development and evolution of 27	
  
greenstone belts (PANDEY et al. 2018). In the 28	
  
KGL samples, the enriched ratios of Nb/U 29	
  
(~60-90.5) Nb/Ta (~15-20) Zr/Hf (163-202) 30	
  
also correspond to enriched mantle sources 31	
  
(HOFMANN et al. 1986; SUN; 32	
  
MCDONOUGH 1989; STOLZ et al. 1996). 33	
  
The high proportion Nb/U in KGL samples can 34	
  
be attributed to the depletion of U at the 35	
  
source. The Nb/U ratio in MORB and OIB is 36	
  
47±7 (HOFMANN et al. 1986) and in the 37	
  
upper and lower crust it is approximately 4.5 38	
  
and 25, respectively (RUDNICK; GAO 2003). 39	
  
However, the subduction hydrous fluids 40	
  
possess a very low Nb/U ratio of 0.22 (AYER 41	
  
1998). Therefore, the Nb/U ratio (~60-90) in 42	
  
the KGL supports its mantle origin similar to 43	
  
MORB and OIB. The lamprophyre is 44	
  
characterized by the abundance of Ni (153-162 45	
  
ppm), Cr (380-470 ppm) and MgO (~6.5-7.6 46	
  
wt. %) which indicates a mantle source (e.g. 47	
  
FREY et al. 1978). Furthermore, the depletion 48	
  
of TiO2 (1.2-1.8 wt. %) and Al2O3 (9.02-11.8 49	
  
wt. %) in the KGL along with enrichment of 50	
  
LILE infer a depleted mantle source that 51	
  
underwent an earlier event of partial melting 52	
  



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  

19 

during the continental crust formation which 1	
  
probably was later modified by the addition of 2	
  
LILE with respect to HFSE through 3	
  
subduction process. Such a conspicuous 4	
  
depletion in HFSE is resultant of Ti-bearing 5	
  
residual phase in the mantle. This is also 6	
  
supported by the occurrence of a Ti-rich 7	
  
minerals like ilmenite, rutile-rich mantle 8	
  
xenoliths (e.g. eclogite) in the kimberlites of 9	
  
the WKF (CHALAPATHI RAO et al. 2004; 10	
  
PATEL et al. 2009; DONGRE et al. 2015). 11	
  
The presence of ilmenite as an accessory phase 12	
  
in the KGL is consistent with this concept. 13	
  

The HFSE/LREE ratio indicates the mantle 14	
  
origin (SMITH et al. 1999). This is supported 15	
  
by the Nb/La ratio of the KGL ranging from 16	
  
0.42 to 0.5, which indicates its origin from a 17	
  
lithospheric mantle (Nb/La<0.5) rather than an 18	
  
OIB like asthenospheric mantle (Nb/La>1). 19	
  
The KGL samples show coherent step-like 20	
  
chondrite normalised patterns with enrichment 21	
  
of LREE and depletion of HREE (heavy rare 22	
  
earth elements). It is evident that the REE 23	
  
concentration in the KGL are depleted when 24	
  
compared to that in the other lamprophyres. 25	
  
The lack of Eu anomaly indicates the absence 26	
  
of plagioclase fractionation. Factors such as a 27	
  
generalised inclined REE pattern 28	
  
(LREE>HREE), LREE-bearing leucoxene after 29	
  
titanites present in the groundmass, indicate 30	
  
involvement of residual garnet during melting. 31	
  
Enrichment of LREE and depletion of HREE 32	
  
and a regular decrease from La to Lu is similar 33	
  
to the REE character of lamprophyres of the 34	
  
CIP with exceptions of lows at Dy, Yb and Ho 35	
  
(Fig. 10a). The primitive mantle normalized 36	
  
HFSE/LREE variation, exemplified by Ta/La 37	
  
versus Hf/Sm plot, provides inference that the 38	
  
mantle source of the KGL samples was 39	
  
modified by fluid related subduction 40	
  
metasomatism (Fig.10b). In the La/Nb-Ba/Nb 41	
  
bivariate diagram, the KGL samples plot very 42	
  
close to the array of subduction enrichment 43	
  
(Fig.10c). The Rb/Sr ratios also support a 44	
  
subduction tectonic environment. The 45	
  
enrichment of volatiles (CO2, H, F, Cl, etc.) in 46	
  
lamprophyres might be due to the presence of 47	
  
hydrous mineral phases such as amphibole, 48	
  
phlogopite and apatite and titanite partially 49	
  
transformed into leucoxene. All these mineral 50	
  
phases are produced from metasomatic 51	
  
processes (FOLEY 1992; BATKI et al. 2014). 52	
  
In general, Rb is retained by phlogopite more 53	
  
easily than Sr. Similarly, Ba more than Rb is 54	
  
hosted in amphiboles. Consequently, a rise by 55	
  
Rb/Sr ratio will lead to the entry of phlogopite 56	
  

phase whilst a rise in Ba/Rb indicates the 57	
  
involvement of amphiboles as the prevailing 58	
  
hydrous mineral phase (FURMAN; GRAHAM 59	
  
1999). Thus the KGL samples show 60	
  
dominance of a phlogopite-rich source in the 61	
  
mantle reservoir (Fig.10d). This is consistent 62	
  
with other nearby lamprophyres such as 63	
  
Udiripikonda and Sivarampet (PANDEY et al. 64	
  
2018; KHAN et al. 2018) indicating a similar 65	
  
magmatic composition at the source for 66	
  
lamprophyres of this region. In addition, 67	
  
emplacement of diamondiferous kimberlites, 68	
  
lamprophyres and alkali syenites within the 69	
  
Wajrakarur kimberlite field suggests an 70	
  
entirely heterogenous mantle of different 71	
  
compositions beneath this part of the EDC 72	
  
(RAGHUVAMSHI et al. 2019). Despite 73	
  
metamorphism, the characteristic chemistry of 74	
  
the lamprophyres persists in the KGL in terms 75	
  
of higher concentrations of Sr, Rb, Pb, Ba and 76	
  
Ce.  77	
  

Globular ocelli of carbonate or felsic 78	
  
silicate aggregates are common features of 79	
  
lamprophyres and some alkali basalts (e.g. 80	
  
PHILLPOTTS, 1990; ROCK,1991, AZBEJ et 81	
  
al. 2006). The ocelli are inferred to be the 82	
  
products of (i) silicate-carbonate (ii) silicate- 83	
  
silicate liquid immiscibility or (iii) late- 84	
  
stage/secondary vesicle filling i.e. amygdales 85	
  
(e.g., VICHI et al., 2005). The origin of 86	
  
primary carbonate globular aggregates in the 87	
  
KGL is thought to be due to late stage silicate- 88	
  
carbonate liquid immiscibility mechanism or 89	
  
late stage melt segregation which can give rise 90	
  
to their presence in the lamprophyre magma 91	
  
(COOPER 1979; HAMILTON et al. 1979; 92	
  
FOLEY 1984; VICHI et al. 2005; MITCHELL 93	
  
2005; TAPPE et al. 2006). Although it is 94	
  
speculative whether the KGL carbonate 95	
  
aggregates are primary or secondary, the 96	
  
presence of discrete calcite/carbonate ocellar 97	
  
crystal aggregates stand as an example of its 98	
  
magmatic origin rather than carbonate filled 99	
  
vesicles. Further, the carbonate ocelli are 100	
  
intimately associated with biotite and 101	
  
plagioclase crystals reflecting their magmatic 102	
  
character. The biotites of the groundmass and 103	
  
that with the carbonate ocelli strikingly show 104	
  
similar composition. If carbonate ocelli are 105	
  
formed earlier than the groundamss, both 106	
  
biotite and plagioclase should be less evolved 107	
  
in terms of Fe/Mg and Ca/Na ratios. The 108	
  
plagioclase in the carbonate ocelli is slightly 109	
  
richer in molar An than that in the groundmass, 110	
  
which clearly supports the magmatic origin of 111	
  
the carbonate ocelli.  The occurrence of 112	
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carbonate ocelli is not an unusual case; similar 1	
  
observations were made in Jungel and 2	
  
Chitrangi lamprophyres in Mahakoshal 3	
  
supracrustal belt (SRIVASTAVA; 4	
  
CHALAPATHI RAO 2007; SRIVASTAVA 5	
  
2013). In addition, the high Zr/Hf ratios in the 6	
  
KGL samples also suggest primary carbonate 7	
  
involvement at the source (CONTICELLI et 8	
  
al. 2015; TAPPE et al. 2016; TAPPE et al. 9	
  
2017; RAGHUVAMSHI et al. 2019). The 10	
  
Zr/Hf ratios in the KGL samples are much 11	
  
higher (~163-201) than the normal continental 12	
  
crust (~36) clearly supporting absence of 13	
  
crustal contamination (RUDNICK; GAO 14	
  
2003). 15	
  

The KGL also contains numerous grains 16	
  
of sulphide minerals. The pyrite crystals 17	
  
possess a thin outline of haematite. It should be 18	
  
noted that certain trace elements in sulphide 19	
  
minerals are used as indicators of origin and 20	
  
environment of ore formation (BRALIA et al. 21	
  
1979, BAJWAH et al. 1987; KOUHESTANI 22	
  
et al. 2017). An occurrence of cobaltoan pyrite 23	
  

and its genetic significance was testified in 24	
  
lamprophyres of Mahakoshal belt (GIRI et al. 25	
  
2018). Hence, a detailed study is warranted on 26	
  
the sulphide minerals present in the KGL to 27	
  
obtain information not only on the 28	
  
petrogenesis of this lamprophyre but also 29	
  
about its paragenetic association with 30	
  
auriferous lodes in the RPSB. Despite the 31	
  
limited number of analyses presented in this 32	
  
contribution, consistency of data allowed to 33	
  
infer certain petrogenetic aspects of the KGL. 34	
  
From the field, petrographic, mineralogic and 35	
  
geochemical investigations, a plausible 36	
  
petrogenetic model for the KGL intrusion 37	
  
would involve the presence of a garnetiferous 38	
  
lithospheric mantle with enriched LILE and a 39	
  
phlogopite-bearing metasomatic event which 40	
  
interacted with carbonated silicate melts. 41	
  
Further investigations are certainly warranted 42	
  
to delineate tectonomagmatic origin of this 43	
  
lamprophyre and its association with 44	
  
auriferous schist belt in contributing to the 45	
  
evolution of the Dharwar craton.  46	
  

	
  

	
  
Figure 10 

Geochemical and tectonic discrimination diagrams of the Kalagalla lamprophyre in comparison with other occurrences. (a) 
Chondrite normalized REE patterns (SUN; MCDONOUGH 1989). (b) Primitive mantle normalised (SUN; MCDONOUGH 1989) 

Ta/La vs. Hf/Sm (JOHNSON; PLANK 2000) (c) La/Nb versus Ba/Nb (KEPEZHINSKAS et al. 2016). (d) Ba/Rb versus Rb/Sr 
(FURMAN; GRAHAM 1999). 
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6. CONCLUSIONS 
	
  

Preliminary investigations of the 1	
  
metalamprophyre at Kalagalla (KGL), 2	
  
emplaced within the auriferous Ramagiri- 3	
  
Penakacherla Schist Belt, show geochemical 4	
  
and petrological similarities with other 5	
  
lamprophyres of the EDC. The rock is sheared, 6	
  
at places chloritised along foliated planes and 7	
  
also actinolitised. The KGL comprises 8	
  
magnesio-hornblende, biotite, plagioclase 9	
  
(Or1.84Ab86.26An11.90), and calcite ocelli as 10	
  
prominent minerals and phlogopite, apatite, 11	
  
zircon as minor minerals. The opaque phases 12	
  
such as magnetite, ilmenite, As-free pyrite, Ni- 13	
  
bearing chalcopyrite associated with Ni-As-Co 14	
  
minerals, LREE (Fe)-bearing titanite partially 15	
  
replaced by leucoxene occur as accessory 16	
  
phases as observed in the SEM-EDS studies. 17	
  
The calcite ocelli show no anomalies in their 18	
  
chemistry. The plagioclase in the carbonate 19	
  
ocelli is slightly richer in molar An than that in 20	
  
the groundmass, which clearly supports the 21	
  
magmatic origin of the carbonate ocelli. The 22	
  
KGL shows porphyritic and nemato- 23	
  
granoblastic textures owing to metamorphism, 24	
  
yet the ocelli texture is preserved. The 25	
  
aphanitic texture, masked by metamorphic 26	
  
textures, makes the KGL challenging to 27	
  
identify its type; however, its mineral 28	
  
chemistry and geochemical character clearly 29	
  
establish its calc-alkaline nature in general and 30	
  
classify it as a spessartite variety in particular 31	
  
with absence of crustal contamination. The 32	
  

ubiquitously present ocelli are made up of 33	
  
crystalline calcite bordered by plagioclase 34	
  
(Or0.86Ab82.01An17.13) and biotite crystals 35	
  
showing coronitic and sometimes glomero- 36	
  
porphyiritic texture. Rarely the ocelli are made 37	
  
up of biotite and ilmenite. The shoshonitic 38	
  
affinity is well demonstrated by its 39	
  
geochemical character. The trace element 40	
  
variations indicate its association with the 41	
  
subduction environment. The enrichment of 42	
  
LREE is most likely attributed to the presence 43	
  
of LREE-bearing titanite partially transformed 44	
  
into leucoxene. The REE pattern 45	
  
(LREE>HREE) indicates involvement of 46	
  
residual garnet during melting. The absence of 47	
  
Eu anomaly demonstrates lack of plagioclase 48	
  
fractionation. The KGL geochemistry displays 49	
  
involvement of carbonate at the source to form 50	
  
ocellar aggregates due to late-stage liquid 51	
  
carbonate-silicate immiscibility or segregation 52	
  
process and also lack of crustal contamination, 53	
  
supported by high Zr/Hf ratios. The occurrence 54	
  
of several lamprophyric intrusions in close 55	
  
spatial and temporal association with 56	
  
diamondiferous kimberlites in this WKF 57	
  
region indicates a highly heterogeneous mantle 58	
  
beneath this part of the craton. This 59	
  
lamprophyre undeniably deserves further study 60	
  
to understand its role on the magmatic events 61	
  
in WKF-RPSB domain and chronological 62	
  
crustal evolution in the Dharwar Craton at a 63	
  
larger scale.  64	
  

	
  
7.	
  ACKNOWLEDGEMENTS	
  
	
  

PRCP thanks Cyient Limited for 
extending all necessary support during the 
initial stage of Covid-19 lockdown. Prof. 
Madabhooshi Srinivas, former Head, 
Department of Geology, Osmania University, 
Hyderabad is thanked for the petrological 
research microscope facility. The authors 
acknowledge the use of SEM-EDS and EPMA 

facilities at the Laboratory of Electron 
Microscopy and X-ray Analysis (LAMARX), 
Faculty of Mathematics, Astronomy, Physics 
and Computing of the National University of 
Córdoba, Argentina. The opinions mentioned 
in this article are of the authors but not 
necessarily of their employer organisations. 

	
  
8. REFERENCES 
	
  
ADHIKARY D., SAHOO R., BEHARA K.K. 

2017. New finding alkaline lamprophyre dykes 
cluster in the Western margin of the Proterozoic 
Pakhal basin in and around Khammam, 
Telangana, India: Evidence of alkaline 
magmatism. In: XXXIV International 
Conference on "Magmatism of the Earth and 
related strategic metal deposits, Russia, 3p.  

ANHAEUSSER C.R. 2014. Archaean greenstone 
belts and associated granitic rocks- A review. 
Journal of African Earth Sciences, 100:684-732. 

ARMITAGE A.E. 1998. Geology of the Sandhill 
Zn-Cu-Pb-Ag prospect and Economic Potential 
of the Gibson- Macquoid greenstone belt, 
District of Keewatin, N.W.T. Ph.D. Thesis, 
University of Western Ontario, 278p. 

 



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  
22 

ASHLEY P.M., COOK N.D.J., HILL R.L., KENT 
A.J.R. 1994. Shoshonitic lamprophyre dykes 
and their relation to mesothermal Au–Sb veins 
at Hillgrove, New South Wales, Australia. 
Lithos, 32:249-272. 

AYER J.A. 1995. Precambrian Geology of 
Northern Swayze Greenstone Belt, Ontario 
Geological Survey, Report 297:71p.    

AYER J.A. 1998. Trace element modeling of 
aqueous fluid peridotite interaction in the 
mantle wedge of subduction zones. 
Contributions to Mineralogy and Petrology, 
132:390-404. 

AZBEJ T., SZABÓ, C., BODNAR R.J., DOBOSI 
G. 2006. Genesis of carbonate aggregates in 
lamprophyres from the northeastern 
Transdanubian Central Range, Hungary: 
Magmatic or hydrothermal origin? Mineralogy 
and Petrology, 88:479-497. DOI 
10.1007/s00710-006-0123-y 

BAKSI A. K. 2000. Search for a deep-mantle 
component in mafic lavas using Nb-Y-Zr plot. 
Canadian Journal of Earth Sciences, 38:813-
824. 

BAJWAH Z.U., SECCOMBE P.K., OFFLER R. 
1987. Trace element distribution, Co:Ni ratios 
and genesis of the Big Cadia iron-copper 
deposit, New South Wales. Australia, 
Mineralium Deposita, 22:292-300. 

BATKI A., PÁL-MOLNÁR E., DOBOSI G., 
SKELTON A. (2014). Petrogenetic significance 
of ocellar camptonite dykes in the Ditrâu 
Alkaline Massif, Romania. Lithos, 200-
201:181-196. 

BIRD P. 1979. Continental delamination and the 
Colorado Plateau. Journal of Geophysical 
Research 84, 7561-7571. 

BRALIA, A., SABATINI, G. AND TROJA, F. 
1979. A revaluation of the Co/Ni ratio in pyrite 
as a geochemical tool in ore genesis problems. 
Mineralium Deposita, 14:353-374. 

CHAKRABARTI R., BASU A.R., PAUL D.K. 
2007. Nd‐Hf‐Sr‐Pb isotopes and trace element 
geochemistry of Proterozoic lamproites from 
southern India: Subducted komatiite in the 
source. Chemical Geology, 236:291-302. 
https://doi.org/10.1016/j.chemgeo.2006.10.006 

CHALAPATHI RAO N.V., GIBSON S.A., PYLE 
D.M., DICKIN A.P. 2004. Petrogenesis of 
Proterozoic Lamproites and kimberlites from 
the Cuddapah Basin and Dharwar craton, 
Southern India. Journal of Petrology, 45:907-
948. https://doi.org/10.1093/petrology/egg116 

CHALAPATHI RAO N.V., WU F.Y., MITCHELL 
R.H., LI Q.L., LEHMANN B. 2013. 
Mesoproterozoic U‐Pb ages, trace element and 
Sr‐Nd isotopic composition of perovskite from 
kimberlites of the Eastern Dharwar Craton, 
southern India: Distinct mantle sources and a 
widespread 1.1Ga tectonomagmatic event. 
Chemical Geology, 353:48-64. 

CHALAPATHI RAO N.V., GIRI R.K., SHARMA 
A., PANDEY A. 2019. Lamprophyres from the 
Indian shield: A review of their occurrence, 
petrology, tectonomagmatic significance and 
relationship with the Kimberlites and related 
rocks. In: Episodes- March 2020, International 
Union of Geological Sciences, 231-248.  
https://doi.org/10.18814/epiiugs/2020/020014 

CONDIE K.C, 1994. Greenstones through time. In: 
CONDIE, K.C. (Ed.), Archean Crustal 
Evolution. Developments in Precambrian 
Geology, 11:85-120. 

COOPER A.F. 1979. Petrology of Ocellar 
Lamprophyres from Western Otago, New 
Zealand. Journal of Petrology, 20(1):139-163. 

CORNELISSEN A. K.; VERWOERD W. J. 1975. 
The Bushmanland kimberlites and related rocks. 
Physics and Chemistry of the Earth, 9:71-80. 

CURRIE K.L.; WILLIAMS P.R. 1993. An Archean 
calc-alkaline lamprophyre suite, northeastern 
Yilgarn Block, western Australia. Lithos, 31:33-
50. 

DIAMOND L.W.; WIEDENBECK M. 1986. K-Ar 
radiometric ages of the Au-quartz veins at 
Brusson, Val d’Ayas, NW Italy. Swiss Bulletin 
of Mineralogy and Petrology, 66:385-394. 

DONGRE A., JACOB D. E., STERN R. A. 2015. 
Subduction related origin of eclogite xenoliths 
from the Wajrakarur kimberlite field, eastern 
Dharwar craton, southern India: Constraints 
from petrology and geochemistry. Geochimica 
et Cosmochimca Acta, 166:165-188. 
https://doi.org/10.1016/j.gca.2015.06.023 

DUBE B., WILLIAMSON K., MCNICOLL V., 
MALO M., SKULSKI T., TWOMEY T., 
SANBORN-BARRIE, M. 2004. Timing of gold 
mineralization at Red Lake, Northwestern 
Ontario, Canada: New constraints from U-Pb 
geochronology at the Goldcorp high- grade 
zone, Red Lake mine, and the Madsen mine. 
Economic Geology, 99:1611-1641. 

FAREEDUDDIN; MITCHELL, R.M. 2012. 
Diamonds and Their Source Rocks in India. 
Journal of Geological Society of India, 
Bangalore, 434p. 

FITTON J.G., SAUNDERS A.D., NORRY M.J., 
HARDARSON B.S. AND TAYLOR R.N. 
1997.  Thermal and chemical structure of the 
Iceland plume. Earth and Planetary Science 
Letters, 153:197-208. 

FOLEY S. 1992. Vein-plus-wall-rock melting 
mechanisms in the lithosphere and the origin of 
potassic alkaline magmas. Lithos, 28:435-453. 

FREY F.A., GREEN D.H., ROY S.D. 1978. 
Integrated models of basalt petrogenesis: A 
study of quartz tholeiites to olivine melilitites 
from south eastern Australia utilizing 
geochemical and experimental petrological data. 
Journal of Petrology, 19:463-513. 

FRIEND C. R. L.; NUTMAN, A. P. 1991. 
SHRIMP U–Pb geochronology of the Closepet 
granite and peninsular Karnataka, South of India 



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  

23 

gneisses. Journal of Geological Society of India, 
38:357-368. 

FROST R.B., CHAMBERLAIN K.R., 
SCHUMACHER J.C., 2000. Sphene (titanite): 
phase relations and role as a geochronometer. 
Chemical Geology, 172:131-148. 

FURMAN T.; GRAHAM D. 1999. Erosion of 
lithospheric mantle beneath the East African 
Rift system: Geochemical evidence from the 
Kivu volcanic province, Lithos, 48: 237-262. 
ttps://doi.org/10.1016/S0024‐4937(99)00031‐6 

GARZA A.O., DOSTAL, J., KEPPIE J.D., PAZ-
MORENO F.A. 2013. Mid-Tertiary (25–21 Ma) 
lamprophyres in NW Mexico derived from 
subduction-modified subcontinental lithospheric 
mantle in an extensional backarc environment 
following steepening of the Benioff zone. 
Tectonophysics, 590:59-71. 

GIRI R.K., PANDIT D., CHAPATHI RAO N.V. 
2018. Cobaltoan Pyrite in a Lamprophyre from 
the Sidhi Gneissic Complex, Mahakoshal Belt. 
Central India, Journal of Geological Society of 
India, 91:5-8. 

GIRI R.K., PANKAJ P., PANDIT D., SAHOO S., 
CHAKRABARTI R., CHALAPATHI RAO 
N.V. 2019. Pyroxenite dykes with petrological 
and geochemical affinities to the Alaskan-type 
ultramafics at the northwestern margin of the 
Cuddapah basin, Dharwar craton, southern 
India: Tectonomagmatic implications. Journal 
of Earth System Science, 128-114. 
https://doi.org/10.1007/s12040-019-1153-2 

HALLBERG J.A. 1985. Geology and mineral 
deposits of the Leonora- Leverton area, 
northeastern Yilgarn block, Western Australia. 
Perth, Hesperian Press, 140p. 

HOFMANN A.W., JOCHUM K.P., SEUFERT M., 
WHITE W. M. 1986. Nb and Pb in oceanic 
basalts: new constraints on mantle evolution. 
Earth and Planetary Science Letters, 79:33-45. 

JIANG, Y.; H., JIANG, S. Y., LING, H. F., NI, P. 
2010. Petrogenesis and tectonic implication of 
Late Jurassic shoshonitic lamprophyre dikes 
from the Liaodong Peninsula, NE China. 
Mineralogy and Petrology, 100: 127-151. 
https://doi.org/10.1007/s00710‐010‐0124‐8 

JOHNSON M.C.; PLANK T., 2000. Dehydration 
and melting experiments constrain the fate of 
subducted sediments. Geochemistry Geophysics 
Geosystems, 1(1): 1007p. https://doi.org/ 

10.1029/1999GC000014. 
HAMILTON D.L., FREESTONE I., DAWSON, 

J.B., DONALDSON C.H. 1979. Origin of 
carbonatites by liquid immiscibility. Nature, 279 
52-54. 

IBRAHIM M.E., EL-TOKHI M.M., SALEH G.M., 
HASSAN M.A., RASHED M.A. 2007. 
Geochemistry of lamprophyres associated with 
uranium mineralization, Southeastern Desert, 
Egypt. Chinese Journal of Geochemistry, 26(4): 
356-365. DOI: 10.1007/s11631-007-0356-4 

KEPEZHINSKAS P.K., ERIKSEN G.M.D., 
KEPEZHINSKAS N.P. 2016. Geochemistry of 
ultramafic to mafic rocks in the Norwegian 
Lapland: inferences on mantle sources and 
implications for diamond exploration. Earth 
Science Research, 5, 148-187. 

KERRICH R. 1986. Fluid infiltration into fault 
zones: chemical, isotopic, and mechanical 
effects. Pure and Applied Geophysics, 124: 225-
268. 

KERRICH R.; WYMAN D.A. 1994. The 
mesothermal gold-lamprophyre association: 
significance for an accretionary geodynamic 
setting, supercontinent cycles, and metallogenic 
processes. Mineralogy and Petrology, 51:147-
172. 

KOUHESTANI H., GHADERI M., LARGE R.R., 
ZAW K. 2017. Texture and chemistry of pyrite 
at Chah Zard epithermal gold-silver deposit, 
Iran. Ore Geology Reviews, 84:80-101. 

MCNAUGHTON N., MUELLER A., GROVES D. 
2005. The age of the giant Golden Mile Deposit, 
Kalgoorlie, Western Australia: ion-microprobe 
zircon and monazite U-Pb geochronology of a 
syn-mineralization lamprophyre dyke. 
Economic Geology, 100 (7):1427-1440. 

KENWORTHY S.; HAGEMANN S.G. 2005. 
Decoupled lamprophyric magmatism and gold 
mineralization at the Archean Darlot lode gold 
deposit, Western Australia. In: J. Mao and F.P. 
Bierlein (Eds.) Mineral Deposit Research: 
meeting the Global Challenge, 8 Biennial SGA 
Meeting, Beijing, China, 987-990. 

KHAN S., DONGRE A., VIJOLEN F., LI, QIU-LI 
AND LE ROUX P. 2018. Petrogenesis of 
lamprophyres synchronous to kimberlites from 
the Wajrakarur kimberlite field: Implications for 
contrasting lithospheric mantle sources and 
geodynamic evolution of the eastern Dharwara 
Craton of southern India, Geological Journal, 1-
23.DOI: 10.1002/gj.3394 

KORNPROBST J. 1984. Proc. 3rd International 
Kimberlite Conference, Kornprobst J. (ed.), 
Kimberlites I: Kimberlites and related rocks, 
Kimberlites II: The mantle and crust mantle 
relationships, Developments in petrology 11A 
and 11B, (Elsevier. 1984), New York. 

KWELWA S.D. 2017. Geological controls on gold 
mineralization in the Kukuluma Terrain, Geita 
Greenstone Belt, NW Tanzania. Ph.D. Thesis, 
James Cook University, Australia. 206p. 
https://researchonline.jcu.edu.au/49987/1/49987
-kwelwa-2017-thesis.pdf  

LEAKE B.E., WOOLEY A.R., ARPS C.E.S., 
BIRCH W.D., GILBERT M.C. 1997. 
Nomenclature of amphiboles: report of the 
subcommittee on amphiboles of the 
international mineralogical association, 
commission on new minerals and mineral 
names. The Canadian Mineralogist, 35:219-246. 

LEELANANDAM C.; RATNAKAR J. 1980. 
Ocellar lamprophyres from the Purimetla 



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  
24 

alkaline pluton, Prakasam district, Andhra 
Pradesh. QuarterlyJournal of Geology, Mining 
and Metallurgical Society of India, 52(2):77-79. 

LEFEBVRE N., KOPYLOVA M., KIVI K. 2005. 
Archean calc-alkaline lamprophyres of Wawa, 
Ontario, Canada: Unconventional 
diamondiferous volcaniclastic rocks. 
Precambrian Research, 138:57-87. 

LE MAITRE, R.W. (Ed.), 2002. Igneous Rocks: A 
Classification and Glossary of Terms. 
Recommendations of the International Union of 
Geological Sciences Subcommission on the 
Systematics of Igneous Rocks. Cambridge 
University Press, Cambridge, 236p. 

MADHAVAN V., DAVID K., 
MALLIKHARJUNA RAO J., CHALAPATHI 
RAO N.V., SRINIVAS M. 1998. Comparative 
study of lamprophyres from the Cuddapah 
Intrusive Province (CIP) of Andhra Pradesh, 
India. Journal Geological Society of India 
52:624-642. 

MANIKYAMBA C., KERRICH R., NAQVI S.M., 
RAM MOHAN M. 2004. Geochemical 
systematics tholeiitic basalts from the 2.7Ga 
Ramagiri-Hungund composite greenstone belt, 
Dharwar Craton. Precambrian Research, 
134:21-39. 

MATHIEU L., BOUCHARD E., GUAY F., 
LIENARD A., PILOTE P., GOUTIER J. 2018. 
Criteria for the recognition of Archean calc-
alkaline lamprophyres: examples from the 
Abitibi Subprovince. Canadian Journal of Earth 
Sciences, 55 (2):188-205. 
https://doi.org/10.1139/cjes-2017-0152 

MESHRAM R.; VENKATESWARA RAO S. 
2009. Mineralogy and geochemistry of 
lamprophyres from Kalwakurty, Mahbubnagar 
district, Andhra Pradesh, Indian Journal of 
Geosciences, 63(4): 361-372. 

MESHRAM T.M., SHUKLA D, BEHERA K.K. 
2015. Alkaline lamprophyre (camptonite) from 
area, NE margin of the Eastern Dharwar Craton, 
southern India. Current Science, 109(11):1931-
1934. 

MHLANGA G. 2002. Data driven predictive 
modelling for Archean lode gold potential, Bubi 
greenstone belt, southwest Zimbabwe, M.Sc. 
dissertation, International institute for Geo-
Informaiton and Earth observation, The 
Netherlands, 126p. 

MITCHELL R. H. 2005. Carbonatites and 
carbonatites and carbonatites, Canadian 
Mineralogist, 43: 2049-2068. 

MOYEN J-F., NEDELE, A., MARTIN H., 
JAYANANDA M. 2003. Syntectonic granite 
emplacement at different structural levels: the 
Closepet granite, South India. Journal of 
Structural Geology, 25:611-631. 

MÜLLER D.; GROVES D.I. 2019. Potassic 
igneous rocks and gold-copper mineralization, 
fifth edition. Mineral resource reviews, 
Springer, 398p. 

MUELLE A.G., HARRIS L.B., LUNGAN A. 1988. 
Structural control of greenstone-hosted gold 
mineralization by transcurrent shearing: A new 
interpretation of the Kalgoorlie mining district. 
Ore Geology Reviews, 3:359-387. 

NASIR S. 2016. Petrology of Late Jurassic 
allochthonous Ultramafic Lamprophyre within 
the Batain Nappes, Northeastern Oman. 
International Geology Review, 58(8):913-928. 

NAQVI S.M., KHAN R.M.K., MANIKYAMBA 
C., RAM MOHAN M., KHANNA T.C., 2006. 
Geochemistry of Neoarchean High-Mg basalts, 
boninites and adakites from the Kushtagi- 
Hungund greenstone belt of the Eastern 
Dharwar Craton (EDC); implications for the 
tectonic setting. Journal of Asian Earth 
Sciences, 27:25-44. 

NAYAK S.S.; KUDARI S.A.D. 1999. Discovery of 
diamond bearing kimberlites in Kalyandurg 
area, Anantapur District, Andhra Pradesh. 
Current Science, 76 (8):1077-1079. 

NÖRTEMANN F.-J., M., MÜCKE A., WEBER K. 
MEINERT D. 2000. Mineralogy of the 
Navachab skarn deposit, Namibia: an unusual 
Au-bearing skarn in high-grade metamorphic 
rocks. Communications of Geological Survey of 
Namibia, 12:169-177. 

NUTMAN A.P., CHADWICK B., KRISHNA RAO 
B., VASUDEV V. N. 1996. SHRIMP U/Pb ages 
of acid volcanic rocks in the Chitradurga and 
Sandur groups and granites adjacent to the 
Sandur schist belt, Karnataka. Journal of 
Geological Society of India, 47:153-164. 

PANDEY A., CHALAPATHI RAO N.V., 
CHAKRABARTI R., PANKAJ P., PANDIT D., 
PANDEY R., SAHOO S. 2018. Post-collisional 
calc-alkaline lamprophyres from the Kadiri 
greenstone belt: Evidence for the Neoarchean 
convergence-related evolution of the Eastern 
Dharwar Craton and its schist belts. Lithos, 320-
321:105-117.  

PANDEY A., CHALAPATHI RAO N.V., PANDIT 
D., PANKAJ, P., PANDEY R., SAHOO S., 
KUMAR A. 2017. Subduction-tectonics in the 
evolution of the eastern Dharwar craton, 
southern India: Insights from the post-
collisional calc-alkaline lamprophyres at the 
western margin of the Cuddapah basin. 
Precambrian Research, 298: 235-251. 

PANDEY A., CHALAPATHI RAO N.V., 
CHAKRABARTI R., PANDIT D., PANKAJ P., 
KUMAR A., SAHOO S. 2017. Petrogenesis of 
a Mesoproterozoic shoshonitic lamprophyre 
dyke from the Wajrakarur kimberlite field, 
Eastern Dharwar Craton, southern India: 
Geochemical and Sr-Nd isotopic evidence for a 
modified sub-continental lithospheric mantle 
source. Lithos, 292-293:218-233. 

PANDEY A., PANDEY R., PANDIT D., PANKA, 
P., CHALAPATHI RAO N.V. 2016. Origin of 
clinopyroxene megacrysts from the 
Udiripikonda lamprophyre, Eastern Dharwar 



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  

25 

Craton, southern India. In:33rd Convention of 
Indian Association of Sedimentologists, 
Department of Geology, Centre for Advanced 
Study, Banaras Hindu University, Varanasi, 
157p. 

PANKAJ P., GIRI R.K., CHALAPATHI RAO 
N.V., CHAKRABARTI R. AND 
RAGHUVAMSHI S. 2020. Mineralogy and 
Petrology of shoshonitic lamprophyre dykes 
from the Sivarampeta area, diamondiferous 
Wajrakarur Kimberlite Field, Eastern Dharwar 
craton, Southern India, Journal of Mineralogical 
and Petrological Sciences, J-STAGE Advance 
Publication, 1-14. 

PATEL S.C., RAVI S., ANILKUMAR Y., NAIK 
A., THAKU, S.S., PATI J.K., NAYAK S.S. 
2009. Mafic xenoliths in Proterozoic kimberlites 
from Eastern Dharwar Craton, India: 
Mineralogy and P-T regime. Journal of Asian 
Earth Sciences, 34:336-346. 
https://doi.org/10.1016/j. jseaes.2008.06.001 

PECCERILLO A.,; TAYLOR S. R. 1976. 
Geochemistry of Eocene calc‐alkaline volcanic 
rocks of the Kastamonu area, northern Turkey. 
Contributions to Mineralogy Petrology, 58:63-
81. https://doi.org/10.1007/ BF00384745 

PERRING C.S., ROCK N.M.S., GOLDING S.D., 
ROBERTS D.E. 1989. Criteria for the 
recognition of metamorphosed or altered 
lamprophyres: a case study from the Archean of 
Kambalda, western Australia. Precambrian 
Research, 43: 215-237. 

PHANI P.R.C., RAJU V.V.N., SRINIVAS M. 
2018. Petrological and Geochemical 
Characteristics of a Shoshonitic Lamprophyre, 
Sivarampet, Wajrakarur Kimberlite Field, 
Southern India. IOSR Journal of Applied 
Geology and Geophysics, 6(2):55-69. 

PHILLPOTTS A.R. 1990. Principles of Igneous 
and Metamorphic Petrology. Prentice Hall, 
Englewood Cliffs, New Jersey, 498p. 

POLAT A.; KERRICH R. 2001. Magnesian 
andesites, Nb-enriched basalt-andesites, and 
adakites from late Archean 2.7 Ga Wawa 
greenstone belts, Superior Province, Canada: 
implications for late Archean subduction zone 
petrogenetic processes. Contributions to 
Mineralogy and Petrology, 141:36-52. 

RAGHUVAMSHI S., PANDEY A., PANKAJ P., 
CHALAPATHI RAO N.V., CHAKRABARTI 
R., PANDIT D., PANDEY R. 2019. 
Lithosphere-asthenosphere interaction and 
carbonatite metasomatism in the genesis of 
Mesoproterozoic shoshonitic lamprophyres at 
Korakkodu, Wajrakarur kimberlite field, 
Eastern Dharwar Craton, southern India, 
Geological Journal, Special Issue Article, 1-18. 

RAMAKRISHNAN M. AND VAIDYANADHAN 
R. 2008. Geology of India. Geological Society 
of India,1: 556p. 

RAMAMURTHY S.; ANANDAMURTHY S. 
1994. Report on preliminary investigation for 

Gold in Kadiri schist belt, Anantapur district, 
Andhra Pradesh, Progress report, Geological 
Survey of India, 43p.  

RATHNA K., VIJAYAKUMAR K., RATNAKAR 
J. 2000. Petrology of the Dykes at Ravipadu, 
Prakasam Province, Andhra Pradesh, India. 
Journal of Geological Society of India, 55(4): 
399-412. 

RATNAKAR J., VIJAYAKUMAR K., 
RAMAKRISHNA D.V. AND NAGASAI 
SARMA V. 1995. An alkaline lamprophyre 
(camptonite) from Ravipadu, Prakasam 
province, Andhra Pradesh, India. Current 
Science, 68: 956-959. 

RATNAKAR J., RAMAKRISHNA D. V., 
VIJAYAKUMAR K. 1996. Geochemistry and 
origin of Kellampalle lamprophyre, Prakasam 
province, Andhra Pradesh. Journal of 
Geological Society of India, 48:697-702. 

RAVI S., VAIDESWARAN T., BHASKARA 
RAO K.S. 2009. Field Guide to Wajrakarur 
Kimberlite Field, Anantapur district, Andhra 
Pradesh, Field Workshop, Wajrakarur 
Kimberlite Field, Geological Survey of India, 
26-31: 54p. 

ROCK N.M.S.,; GROVES D.I. 1988. Do 
lamprophyres carry gold as well as diamonds? 
Nature, 332:235-255. doi:10.1038/332253a0. 

ROCK N.M.S, DULLER P., HASZELDINE R.S., 
GROVES, D.I. 1987. Lamprophyres as potential 
gold exploration targets: Some preliminary 
observations and speculations University 
Western Australia Geology Department, Univ. 
Ext. Pub., 11:271-286. 

ROCK N.M.S., GROVES D.I., Perring C.S. 1988. 
Gold, lamprophyres and porphyries: A new 
genetic model: Geological Society of Australia 
Abstracts, 22:3-22. 

ROCK N.M.S. 1987. The nature and origin of 
lamprophyres: an overview. Geological Society 
of London, Special Publication 30: 191-226. 

ROCK N.M.S. 1991. Lamprophyres. Blackie, 
London 225p. 

RUDNICK R. L.; GAO S. 2003. Composition of 
the continental crust; Treatise on Geochemistry 
3: 659p. 

SANISLAV I., KOLLING S.L., BRAYSHAW M., 
YVONNE A.C., PAUL H.GM., THOMAS 
G.B., MARWA I.M., ROGER R. 2015. The 
geology of the giant Nyakanga gold deposit. 
Ore Geology Reviews, 69:1-16. 

SCARROW J.H., MOLINA J.F., BEA F., 
MONTERO P., VAUGHAN A.P.M. 2011. 
Lamprophyre dikes as tectonic markers of late 
orogenic transtension timing and kinematics: A 
case study from the Central Iberian Zone, 
Tectonics, TC4007, 30(4):22p. 

SHAIKH A.M., PATEL S.C. RAVI S. D. 
BEHERA D., PRUSETH K.L. 2016. 
Mineralogy of the TK1 and TK4 ‘kimberlites’ 
in the Thimmasamudram cluster, Wajrakarur 
Kimberlite Field, India: Implications for 



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  
26 

lamproite magmatism in a field of kimberlites 
and ultramafic lamprophyres. Chemical 
Geology, 
http://dx.doi.org/10.1016/j.chemgeo.2016.10.03
0 

SHIVANNA S., SRIVASTAVA J. K., NAMBIAR 
A. R. 2002. Kimberlite occurrence in Raichur 
area, Karnataka, comments by V. Madhavan. 
Journal Geological Society of India, 60, 478-
480. 

SIDDORN J.P. 2011. The Giant-Con Gold Deposit: 
A once-linked Archean Lode-Gold System. 
Ph.D. Thesis, University of Toronto. 330p. 

SILLITOE R.H.,; THOMPSON J.F.H. 1998. 
Intrusion-related vein gold deposits: types, 
tectono-magmatic settings and difficulties of 
distinction from orogenic gold deposits. 
Resource Geology, 48(2):237-250. 

SIMS P.K.; DAY W.C. 1992. A Regional 
Structural Model for Gold Mineralization in the 
Southern Part of the Archean Superior Province, 
United States. Chapter M, In: Contributions to 
Precambrian Geology of Lake Superior Region. 
U.S. Geological Survey Bulletin, 1904, 28p. 
https://pubs.usgs.gov/bul/1904m/report.pdf  

SINCLAIR W. D. 2007. Porphyry deposits. In W. 
D. Goodfellow, (Ed.), Mineral Deposits of 
Canada. A synthesis of Major Deposit Types. 
Geological Association of Canada, Mineral 
Deposits Division, Ottawa, Special Publication 
No.5:223-243. 

SMITH E.I., SÁNCHE A., WALKER J.D., WANG 
K. 1999. Geochemistry of mafic magmas in the 
hurricane volcanic field, Utah: implications for 
small- and large-scale chemical variability of 
the lithospheric mantle. Journal of Geology, 
107:433-448. 

SRIVASTAVA R.K. 2008. Global intracratonic 
boninite-norite magmatism during the 
Neoarchean-Paleoproterozoic: evidence from 
the central Indian Bastar craton. International 
Geology Reviews 50:61-74. 

SRIVASTAVA R.K. 2013. Petrological and 
geochemical characteristics of Paleoproterozoic 
ultramafic lamprophyres and carbonatites from 
the Chitrangi region, Mahakoshal supracrustal 
belt, central India. Journal of Earth System 
Science 122(3):759-776. 

SRIVASTAVA R. K.; CHALAPATHI RAO N.V. 
2007. Petrology, geochemistry and tectonic 
significance of Palaeoproterozoic alkaline 
lamprophyres from the Jungel Valley, 
Mahakoshal supracrustal belt, Central India. 
Mineralogy and Petrology, 89: 189-215. 

 
SRIVASTAVA R.K., SINGH R.K., VERMA S.P. 

2004. Neoarchean mafic volcanic rocks from 
the southern Bastar greenstone belt, Central 
India: petrological and tectonic significance. 
Precambrian Research, 131:305-322.  

ŠTEMPROK M.; SEIFERT T. 2011. An overview 
of the association between lamprophyric 

intrusions and rare-metal mineralization, 
Mineralogia, 42(2-3):121-162. 

STERN R.J. 2002. Subduction zones. Reviews in 
Geophysics, 40:1012. http://dx.doi.org/ 
10.1029/2001RG000108. 

STOPPA F., RUKHLOV A.S., BELL K., 
SCHIAZZA M., VICHI G. 2014. Lamprophyres 
of Italy: early Cretaceous alkaline lamprophyres 
of Southern Tuscany, Italy. Lithos, 188; 97-112. 

SUBRAHMANYAM K., MALLIKARJUNA RAO 
J., LEELANANDAM C. 1987. Occurrence of 
lamprophyre dykes near Khammam, Andhra 
Pradesh, Indian Journal of Geology, 35:65-70. 

SUGAVANAM E.B., MALLIKARJUNA C., 
VIDYADHARAN K.T. 1994. Archaean Meta 
Lamprophyres from Nuggihalli Schist Belt, 
Hassan District, Karnataka. Geological Society 
of India, 43(2):115-137. 

SUN S.; MCDONOUGH W. F. 1989. Chemical 
and isotopic systematics of oceanic basalt: 
Implications for mantle composition and 
processes. In A. D. Saunders; M. J. Norry 
(Eds.), Magmatism in the ocean basins, London: 
Geological Society of London Special 
Publication, 42:313-345. 

SWAMI NATH J., RAMAKRISHNAN M., 
VISWANATHA M.N. 1976. Dharwar 
stratigraphic model and Karnataka cratonic 
evolution. Records of Geological Survey of 
India, 107:149-175. 

TAPPE S., FOLEY S. F., JENNER G.A, HAMAN 
L.M., KJARSGAARD B.A., ROMER R. L., 
STRACKE A., JOYCE N. HOEFS J. 2006. 
Genesis of ultramafic lamprophyres and 
carbonatites at Aillik Bay, Labrador: A 
consequence of incipient lithospheric thinning 
beneath the North Atlantic craton, Journal of 
Petrology, 47:1261-1315. 

TAYLOR W.R., ROCK N.M.S., GROVES D.I., 
PERRING C.S., GOLDING S.D. 1994. 
Geochemistry of Archean lamprophyres from 
the Yilgarn Block, Western Australia: Au 
abundance and association with gold 
mineralization, Applied Geochemistry, 9:197-
222. 

VASUDEV V.N. 2009. Field Guide to selected 
Gold Prospects in Karnataka and Andhra 
Pradesh. Geological Society of India, May30-
June 05. 

VICHI G., STOPPA F., WALL F. 2005. The 
carbonate fraction in carbonatitic Italian 
lamprophyres. Lithos, 85:154-170. 

VIJAYA KUMAR K.; RATNA K. 2008. 
Geochemistry of the mafic dykes in the 
Prakasam Alkaline Province of Eastern Ghats 
Belt, India: Implications for the genesis of 
continental rift zone magmatism. Lithos, 
104:306-326. 
https://doi.org/10.1016/j.lithos.2007.12.012 

WILLIAMS H. 1994. The lithological setting and 
controls on gold mineralization in the Southern 
Ore Zone of the Hampton-Boulder gold deposit, 



Geochimica Brasiliensis 34(1): 1 - 27, 2020	
  
	
  

27 

New Celebration Gold Mine, Western Australia. 
Unpublished BSc (Hons) thesis, University of 
Western Australia.  

WITT W.K.; HAMMOND D.P. 2008. Archaean 
gold mineralization in an intrusion related, 
geochemically zoned district-scale alteration 
system in the Carouse Basin, Western Australia. 
Economic Geology, 103:445-454. 

WYMAN D.; KERRICH R. 1988. Alkaline 
magmatism, major structures, and gold deposits 
Implications for greenstone belt gold 
metallogeny. Economic Geology, 83:454-461. 

ZACHARIAH J.K., MOHANTA M.K. AND 
RAJAMANI V. 1996. Accretionary evolution of 
the Ramagiri schist belt, Eastern Dharwar 
Craton. Journal of Geological Society of India, 
47:279-291. 

ZHILONG H., CHONGQIANG L., HAILING Y., 
CHENG XU, RUNSHENG H., YUNHUA X., 
BO Z., WENBO LI. 2002. The geochemistry of 
lamprophyres in the Laowangzhai gold deposits, 
Yunnan Province, China: Implications for its 
characteristic of source region. Geochemical 
Journal, 36:91-112. 

	
  
	
  


