Evidências de Eventos de Oxigenação a partir da Geoquímica de Formações Ferríferas Bandadas do *Greenstone Belt* Pitangui (Meso-Neoarqueano), porção sul do Cráton São Francisco

RESUMO

O Greenstone Belt Pitangui, localizado a noroeste do Quadrilátero Ferrífero em Minas Gerais, é um terreno de idade meso- a neoarqueana. Sua estratigrafia é composta por intercalações de rochas metavulcânicas que são registros de atividade vulcânica, e rochas metassedimentares químicas e clásticas (metamorfizadas em fácies xisto verde a baixo anfibolito) como metarenitos e formações ferríferas bandadas (BIFs), rochas comumente observadas em seções oceânicas greenstone belts. As condições bioquímicas dos oceanos e da atmosfera que proporcionaram a formação de BIFs (restritos Pré-Cambriano) diferem consideravelmente das que prevalecem ao atualmente. Estas rochas são resultado da precipitação química bioinduzida de óxido de Fe e Si, sendo resultado de condições únicas exclusivas ao passado da Terra. A deposição de BIFs no Greenstone Belt Pitangui predominou em estágios de bacia faminta e cessação do vulcanismo, estando estas intercaladas a metarenitos resultantes de fluxos turbidíticos ocasionais. A geoquímica destas BIFs indica a incorporação de material clástico depositado durante pequenas interrupções na precipitação bioquímica. Este fator pode ser identificado a partir da observação de padrões em elementos maiores (Fe, Ti, Al, Mn) em quatro grupos de amostras de diferentes níveis estratigráficos (Pimentão, Biquinho, Aparição e São Francisco). As proporções de ETRs e Y sugerem a classificação destas BIFs como do tipo Algoma. Amostras do nível Pimentão apresentam anomalias negativas de Ce, o que indica existência de oxigênio livre nos mares arqueanos, mesmo que localmente. Isto corrobora de formas consistente com as anomalias negativas de Ce anteriormente descritas para BIFs do nível Biquinho (superior ao nível Pimentão). A ocorrência destas anomalias em intervalos estratigráficos subsequentes evidencia a continuidade temporal do evento de oxigenação mais antigo já registrado no Brasil (2,86-2,78 Ga), que é anterior ao Grande Evento de Oxigenação (GEO - 2,4 Ga) proposto na literatura.

Palavras Chave: Geoquímica de BIF's, *Greenstone Belt* Pitangui, Quadrilatero Ferrifero, Grande Evento de Oxidação.

ABSTRACT

The Greenstone Belt Pitangui, located northwest of the Quadrilátero Ferrífero in Minas Gerais, is a terrain of meso-neoarquean age. Its stratigraphy is composed of intercalations of metavulcanic rocks that are records of volcanic activity, and metastatic chemical and clastic rocks (metamorphosed in green shale to low amphibolite facies) such as metarenites and banded iron formations (BIFs), rocks commonly observed in oceanic greenstone belts. The biochemical conditions of the oceans and the atmosphere that gave rise to BIFs (restricted to the Pre-Cambrian) differ considerably from those prevailing today. These rocks are the result of the bio-induced chemical precipitation of Fe and Si oxide, resulting from unique conditions exclusive to Earth's past. The deposition of BIFs in the Greenstone Belt Pitangui predominated in stages of starved basin and cessation of volcanism, these

Mariana Brando Soares² Kathelyn Nunes da Silva Santos¹ Lorrana Roriz Faria¹ Atlas Vasconcelos Corrêa Neto^{1,4} Pedro Henrique Montenegro da Silva³ Ricardo Oliveira de Araújo Mabub³

Nicollas de Oliveira Ferreira

Santos 1*

Calvin Ferreira¹

¹ Departamento de Geologia Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos, 274 Cidade Universitária - Ilha do Fundão, Rio de Janeiro RJ Brasil CEP 21941-590

² Programa de Pós-Graduação em Geologia Instituto de Geociências Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos, 274 Cidade Universitária - Ilha do Fundão, Rio de Janeiro RJ Brasil CEP 21941-590

³ IAMGOLD Brasil R. Fernandes Tourinho, 147 Funcionários, Belo Horizonte MG Brasil CEP 30112-000

* Autor correspondente nicollas.ofs@gmail.com

being intercalated with metarenites resulting from occasional turbiditic flows. The geochemistry of these BIFs indicates the incorporation of deposited clastic material during short interruptions in biochemical precipitation. This factor can be identified by observing patterns in larger elements (Fe, Ti, Al, Mn) in four groups of samples of different stratigraphic levels (Pimentão, Biquinho, Aparição and São Francisco). The proportions of ETRs and Y suggest the classification of these BIFs as the Algoma type. Samples of the Pimentão level have negative anomalies of Ce, which indicates the existence of free oxygen in the Archaean seas, even locally. This corroborates in ways consistent with the negative anomalies of Ce previously described for BIFs of the Biquinho level (superior to Pimentão level). The occurrence of these anomalies in subsequent stratigraphic intervals evidences the temporal continuity of the oldest oxygenation event already registered in Brazil (2.86-2.78 Ga), which is prior to the proposed Great Oxygenation Event (GEO - 2.4 Ga) in literature.

Keywords: Geochemistry of BIF's, Greenstone Belt Pitangui, Iron Quadrangle, Great Oxidation Event.

1. INTRODUÇÃO

As BIFs são rochas típicas em greenstone belts, com condições de deposição e formação muito diferentes das que prevalecem atualmente (Basta et al., 2014). Sua gênese foi, durante muito tempo, associada à produção local de oxigênio por atividade microbiana em ambiente de mar raso. O oxigênio produzido pelas bactérias era suficiente para oxidar o Fe (Schirrmeister et al., 2015), que era localmente abundante nos oceanos pré-cambrianos, mas não para promover a existência de oxigênio livre na hidrosfera. Estudos recentes, no entanto, propõem oxidação ultravioleta como forma de precipitação do Fe necessitando apenas de luz solar (Lyons et al., 2013). Durante o Arqueano, período de expressiva formação de BIFs, a Terra passou por uma série de mudanças nas condições químicas de sua atmosfera (e consequentemente oceanos), sendo a maior delas caracterizada como o "Grande Evento de Oxidação" (GEO) delimitado cronologicamente em torno de 2,45 e 2,22 Ga (Bekker et al., 2004; Holland, 2006; Pecoits et al., 2009; Frei et al., 2009). O estudo da geoquímica das BIFs permite obter informações acerca das condições redox que prevaleceram nesta época sendo uma importante ferramenta para desvendar tais mudanças da Terra durante o Pré-Cambriano.

Atualmente o GEO pode ser caracterizado por um rápido acumulo de níveis de oxigênio atmosférico durante o início do Proterozóico (Schirrmeister *et al.*, 2015). Segundo Frei *et al.* (2009), há a possibilidade de que tenham existido picos de oxigenação anteriores ao início do GEO seguidos de momentos com baixas concentrações de O_2 que se estenderam por milhões de anos antes da estabilização da atmosfera (Lyons *et al.*, 2014). Alguns autores relatam a existência de condições oxigenantes nos oceanos muito anteriormente o GEO (ex., Wang *et al.*, 2016; Brando Soares *et al.*, 2017), ainda no Arqueano. A descrição do pulso oxigenante em Brando Soares *et al.* (2017) baseou-se no estudo geoquímico de BIFs da seção basal do Greenstone Belt Pitangui, que aflora a noroeste do Quadrilátero Ferrífero em Minas Gerais, Brasil.

Uma das províncias minerais mais importantes do mundo, o Quadrilátero Ferrífero (Fig.1) se destaca por suas jazidas de ferro hospedadas em formações ferríferas (BIFs) da Formação bandadas Cauê. Supergrupo Minas (2,65 Ga- Cabral et al., 2012). Em menor escala, BIFs mais antigas na estratigrafia do Quadrilátero Ferrífero (2,9-2.7 Ga. Meso-Neoarqueano) apresentam mineralizações de ouro orogênico arqueanas que caracterizam depósitos de classe mundial em operação (Cuiabá) e com operações encerradas (Morro Velho). Essas BIFs com depósitos de ouro fazem parte da estratigrafia do Greenstone belt Rio das Velhas, um cinturão de rochas composto por rochas metassedimentares e metaígneas com idades variantes entre 2,9 e 2,67 Ga (Machado and Carneiro, 1992; Hartmann et al., 2006; Noce et al., 2007; Baltazar and Zucchetti 2007), cronocorrelato ao Greenstone Belt Pitangui (Romano 2007, Brando Soares *et al.*, 2017), localizado 100 km a noroeste.

Amostras de metarenitos intercalados a BIFs da unidade inferior do Greenstone Belt Pitangui apresentam uma idade máxima de deposição (U-Pb) em 2,86 Ga (Brando Soares *et al.*, 2017). Esta idade foi interpretada também como idade de deposição das BIFs e do pulso de oxigenação registrado nestas rochas. Neste estudo, buscamos apresentar evidências que reforcem o pulso de oxigenação documentado por Brando Soares *et al.* (2017), que antecede o GEO em 400 Ma., através do estudo do comportamento geoquímico de BIFs de outros andares estratigráfcos do Greenstone Belt Pitangui.

Figura 1

Geologia regional do Quadrilatero Ferrífero, sul do Cráton São Francisco. . Principais dominios; terrenos gnaissicos, granitóides, migmatitos e TTGs acompanhados de cinturões metavulcanosedimentares e rocchas metasedimentares neoarqueanas-proterozóicas. Destacam-se o Greensone belt Pitangui e o Depósito São Sebastião, hospedeiros das BIFs analisadas neste trabalho.Indica localização em relação as Belo Horizonte, Pará de Minas e Pitangui. Modificado de Dorr (1969), Corrêa Neto *et al.* (2012), Pinto and Silva (2014) e Brando Soares *et al.* (2017).

2. GEOLOGIA REGIONAL

O Greenstone Belt Pitangui se localiza no Quadrilátero Ferrífero; região que consiste em terrenos granito-gnaisse do tipo trondhjemitostonalito-granodiorito (Fig.2) formados entre 3,3 e 2,9 Ga; granitóides Neoarqueanos a Paleoproterozóicos e greenstones belts arqueanos metamorfizados sobrepostos por sequências metassedimentares Neoarqueanas a Neoproterozoicas (Dorr, 1969; Baltazar e Zucchetti, 2007). Tais sequências metassedimentares representam grande parte

das rochas do Quadrilátero Ferrífero, sendo o Supergrupo Minas o mais basal, composto por rochas de origem química e clástica variadas depositadas de 2,67 a 2,1 Ga (Koglin *et al.*, 2014; Machado *et al.*, 1996; Reis *et al.*, 2002). Em sequência, o Grupo Itacolomi, é composto por metarenitos e metaconglomerados polimiticos com cerca de 2,1Ga (Alkmim and Marshak, 1998), que por sua vez é anterior ao Super Grupo Espinhaço que preenche bacias do tipo rifte com idades de 1,19 a 0,9 Ga na porção norte do Quadrilátero (Alkmim, 2012; Chemale *et al.*, 2012). O Grupo Bambuí (0,68 a 0,60 Ga) é representado por pelitos e mármores de baixo metamorfismo depositados em bacia intracratonica durante a orogenia Brasiliana (Zalán and Silva, 2012).

Figura 2

(a) Mapa geológico do greenstone belt e área adjacente. 1- Batólito Pequi; 2- Complexo Belo Horizonte; 3- Intrusão Jaguara; 4-Domoltaúna. (b) Seção de A-B do Greenstone Belt Pitangui, vide mapa (C) Localização de pontos de perfuração e obtenção de amostras de BIF's para geoquímica de rocha total (d) Esterogramade com S0 e Sn e eixo de dobra (314/15) calculado para Dn+1, com exceção ao demonstrado; (e) Estereograma referente a porção leste do greenstone belt, que está em contato com batólito Florestal e o complexo Belo Horizonte, Brando Soares et al. (2017).

0 Greenstone Belt Rio das Velhas compreende rochas metavulcanoas sedimentares mais antigas do Quadrilátero Ferrífero, sua origem equivale à amalgamação sequências vulcano-sedimentares de de diferentes ambientes tectônicos com idade de 2,9-2,67 Ga (Noce et al., 2002, 2005, 2007; Baltazar and Zucchetti, 2007). Formalmente classificado como Supergrupo Rio das Velhas, se subdivide nos Grupos Maquiné e Nova Lima, este último representado por basaltos toleiiticos-komatiiticos; rochas químicas, vulcanoclásticas e metassedimentares intercaladas com rochas vulcânicas de idades variando entre 2,9 a 2,78 Ga, seguidos por rochas metamórficas químicas-clásticas em sequências turbiditicas distais intercaladas com rochas vulcânicas félsicas de 2,74 Ga, grauvacas vulcanoclásticas e epiclásticas e rochas vulcânicas félsicas subordinadas de 2,7 Ga (Baltazar and Zucchetti, 2007). O Grupo Maquiné abriga metarenitos e metaconglomerados depositados sobre inconformidade angular. Tectonicamente o Greenstone Belt Rio das Velhas foi deformado pelos eventos orogênicos Rio das

Velhas e Minas (2,75-2,67 e 2,1 Ga, respectivamente) e pelo evento Brasiliano (0,65-0,5 Ga) segundo Baltazar and Zucchetti, 2007, Teixeira et al., 2015 e Noce et al., 2005, 2007, sendo o último registrado apenas na porção leste do Ouadrilátero Ferrífero.Cronocorrelato ao Greensone Belt Rio das Velhas, o Greenstone Belt Pitangui se localiza a nordeste do primeiro. Dividida em três unidades; a unidade inferior compreende rochas metavulcânicas máficas e ultramáficas com intercalações de rochas metassedimentares de origem química e (meta-arenitos, clástica metapelitos e formações ferríferas bandadas). A unidade intermediária corresponde predominantemente a intervalos metassedimentares (com maiores pacotes de meta-arenitos e menos BIFs) e rochas metavulcânicas intermediárias transicionais em relação a unidade inferior (Faria 2017). A unidade superior equivale a quartizitos sericíticos e metaconglomerados

Estas unidades podem polimiticos. ser observadas e correlacionadas em três localidades distintas do greenstone; Aparição, São Francisco e São Sebastião, que apresentam colunas estratigráficas individuais contendo níveis de BIFs. A localidadede São Sebastião apresenta dois níveis de BIFs denominados de Pimentão (nível mais inferior) e Biquinho. Estes dois níveis possuem continuidade lateral na localidade de Aparição e pertencem à unidade inferior. As BIFs da localidade de São Francisco estão posicionadas na unidade intermediária, acima dos estratos presentes em São Sebastião e Aparição (Fig.3). Segundo apresentado no trabalho Brando Soares et al. (2017), grãos detríticos de zircão retirados de uma camada de metarenito intercalada com BIFs do nível Biquinho em São Sebastião revelaram uma idade máxima de deposição em torno de 2,86 Ga com limite superior de 2,78 Ga por correlação com o Greenstone Belt Rio das Velhas.

Figura 3

Perfil estratigráfico demonstrando a posição dos níveis Aparição e São Francisco, no greenstone belt Pitangui (hospedando níveis Pimentão e Biguinho, vide Fig.7 para maior detalhe) em relação ao greenstone belt Rio das Velhas. Modificado de Brando Soares *et al.* (2017) e Faria, 2017.

Foram selecionadas, descritas e analisadas diferentes amostras de BIFs não hidrotermalizadas de níveis estratigráficos distintos (São Francisco, Pimentão e Aparição). Estas sendo identificadas por sua ausência de sulfetos e venulações, baixa quantidade de sulfetos e elementos calcófilos na análise de rocha total. As amostras foram retiradas de testemunhos orientados de sondagem diamantada rotativa realizadas pela empresa IAMGOLD, durante trabalhos de pesquisa mineral na área do Greenstone Belt Pitangui. A compilação de dados totaliza 25 amostras de 6 furos (FAP31, FSF003, FSF005, FJG 58, FJG110 e FJG117). Estes furos abrangem 3 níveis de BIFs, sendo eles denominados de: Pimentão, Aparição e São Francisco. As amostras do nível Biguinho (26-47, equivalentes aos furos FJG1, FJG13 e FJG14) foram previamente analisadas e publicadas por Brando Soares et al. (2017), onde anomalias negativas de Ce foram detectadas, servindo como referência para demais amostras. As análises para as amostras (1 a 25) referentes aos níveis Pimentão, Aparição e São Francisco são apresentadas pela primeira vez neste trabalho.

As amostras selecionadas para geoquímica de rocha total foram transformadas em pó de rocha preparado a partir de 15cm de meio testemunho de 5-7cm de diâmetro. A coleta foi

4. RESULTADOS

4.1 GEOQUÍMICA DE ROCHA TOTAL

Quarenta e sete (47) amostras foram selecionadas das diferentes localidades que englobam intervalos distintos da estratigrafia do Greenstone belt Pitangui. As amostras numeradas de 1 a 3 são referentes às BIFs da localidade São Francisco, 4 a 11 à Aparição, 12 a 25 ao nível Pimentão e 26 a 47 ao nível Biquinho (Tabela no Anexo). As amostras do nível Biguinho foram estudadas por Brando Soares et al. (2017) e são aqui utilizadas para fins de comparação e correlação. Considerando-se os elementos maiores para todas as amostras, os valores de Fe₂O₃ variam de 39% a 54% do volume total, enquanto a SiO_2 compreende intervalos de 37% a 53%. Demais elementos raramente atingem 3%, em grande parte se mantendo abaixo de 2%, com exceção de CaO, que apresenta valores de até 6% (Tabela no Anexo).

feita abaixo do nível de alteração intempérica e visando amostras sem influência as hidrotermal posterior. Os valores finais foram recalculados para base anídrica de 100%. As análises de rocha total foram feitas para elementos maiores, traços e terras raras + Y através de espectrometria ICP-MS seguindo fusão de metaborato/tetraborato e diluída em digestão nítrica, já metais base e preciosos (Ag, As, Au, Bi, Cd, Cu, Hg, Mo, Pb, Sb, Se, Ti, Zn) foram analisados por ICP-MS após digestão por água régia e teores de carbono/enxofre foram quantificados via LECO. Todo o processo foi executado pela Bureu Veritas Laboratório Mineral (laboratórios ACME) em Vancouver, Canada.

Os resultados foram normalizados para o padrão PAAS (Post-Archean Australian Shale-McLennan, 1989) indicados pelo acrônimo "sn". O diagrama spider foi confeccionado a partir da média entre as amostras de cada alvo e individualmente para cada grupo de amostras com uso do software GCDkit. Enquanto que as anomalias de Ce e La foram obtidas a partir do método sugerido por Bau and Dulski (1996), no qual as amostras tem suas respectivas quantificadas pelas anomalias equações $(Ce/Ce)_{SN} = Ce_{SN}/(0.5La_{SN} + 0.5Pr_{SN}) e$ $(Pr/Pr_{SN}) =$ $Pr_{SN}/(0.5Ce_{SN})$ + $0.5 Nd_{SN}$), descartando as amostras que apresentassem elevada contribuição de clásticos.

A relação TiO_{2 vs.} Al₂O₃ apresenta um forte trend positivo sem nenhuma distinção de grupos por níveis estratigráficos, com exceção da amostra 7 que apresenta elevado valor de TiO_2 relativo ao Al_2O_3 não estando alinhado ao padrão observado. Amostras 7, 9, 10, 13, 15, 24, 25, 29, 30, 31, 36, 40 e 46 se destacam por apresentarem valores de TiO_{2 vs.} Al₂O₃ expressivamente superiores as demais amostras (Tabela no Anexo). Também foi observado um nítido trend negativo na relação Al₂O₃/ (Al₂O₃ + FeO + MnO) vs. FeO/TiO₂, os quais as amostras 1, 3, 5, 34, 41 e 44 se destacam pelo elevado valor de FeO/TiO2 e as amostras 15, 24, 29 e 31 se destacam pelo resultado acima do padrão para relação Al₂O₃/ (Al₂O₃ + FeO + MnO) (Fig.4). Foi feita média entre as amostras de cada alvo para comparação evolutiva e composicional das BIF's em relação a estratigrafia do *Greenstone Belt* Pitangui (Fig.5).

É evidente o enriquecimento de ETRs pesados sobre os ETRs leves, característica que pode ser indicadora para ambientes formadores de BIFs com características químicas mais próximas a água do mar atual (Bau and Dulski, 1996; Bolhar *et al.*, 2004). Os padrões de ETRs apresentam resultados variáveis para ambientes distais e proximais da costa por contribuição de águas continentais (Macedo *et al.*, 2017), no entanto condições redox são geralmente bem marcadas pelas variações das razões Ce^{+4}/Ce^{+3} e Eu^{+3}/Eu^{+2}

Figura 4

Gráficos TiO₂ vs. Al₂O₂ indicando contribuição clástica na composição das BIFs, nos quais as amostras com contribuições elevadas são demarcadas por icones sem preenchimento (A) São Francisco e Aparição; (C) Pimentão; (E) Biquinho. Também apresenta gráficos AlO3/(Al2O3 + FeO + MnO) vs. FeO/TiO2, indicando a contribuição de clásticos de origem máfica e ultramáfica preferencial para FeO/TiO2 =< 2000 nas amostras em relação a material típico de BIFs (B) São Francisco e Aparição; (D Pimentão; (F) Biquinho. Baseado em Barret (1981) e Percoits *et al.* (2009)

(Bau,1993). Anomalias positivas de Eu elevada, média de 2,03 (Tabela no Anexo), são observadas nos quatro grupos de amostras, sendo menos evidente para os BIFs do nível Aparição. O padrão apresentado pelos BIFs do nível Pimentão é muito semelhante ao dos BIFs do nível Biquinho estudados em detalhe por Brando Soares *et al.* (2017).

Dentre as 47 amostras, foram descartadas as

números 9, 13, 29, 30, 31 e 40 por sua elevada contribuição clástica (Fig.4), já quatro amostras do nível Pimentão e oito do nível Biquinho apresentaram anomalias negativas verdadeiras de Ce (Fig.6), seguindo os critérios estabelecidos por Bau and Dulski, 1996 (Amostras de números; 17, 19, 22, 23 e 26, 27, 33, 34, 35, 37, 38 e 44, respectivamente), totalizando 12 amostras.

Figura 5

Normalização PAAS (Mclennas, 1989) em escala Log (A) média entre os grupos de amostreas enquanto (B) São Francisco; (C) Aparição; (D) Pimentão e (E) Biquinho, são para amostras individuais também em Log.

Diagrama (Ce/Ce*)sn vs (Pr/Pr*)sn (Bau and Dulski, 1996), normalizado para PAAS. Para anomalias negativas de Ce, Temos o resultado de 8 amostras do nível Biquinho e 4 do nível Pimentão, assim como uma anomalia positiva de Ce para cada.

5. DISCUSSÕES

5.1 ELEMENTOS MAIORES E EVOLUÇÃO ESTRATIGRÁFICA

A escassez de exemplares de formações ferríferas bandadas e seus processos deposicionais (Posth *et al.*, 2013) dificulta o uso do conceito de atualismo para entender os processos que levaram à deposição deste registro singular do passado da Terra. Neste âmbito, a geoquímica destas rochas é a principal ferramenta para desvendar as condições específicas em que estas rochas se formaram.

As BIFs do greenstone belt Pitangui apresentam variações geoquímicas pontuais ao longo da estratigrafía, onde as suas assinaturas de elementos maiores, menores, traços e terrasindicam mudanças raras em seu no paleoambiente de formação. A assinatura geoquímica de elementos maiores nas BIF's permite identificar pequenos intervalos de deposição clástica, em meio ao predomínio de deposição química, possibilitando inferir mudanças nas condições de sedimentação da bacia (Fig.4). Segundo Brando Soares et al. (2017), que comparou as BIF's Biquinho a análogos em greenstone belts ao redor do mundo, exemplos como o greenstone belt Abitibi apontam para as BIF's com variações na sua proporção de detríticos representarem intervalos na atividade magmática junto a ocorrência de rochas metassedimentares clásticas (Thurdson et al., 2008).

A análise dos padrões geoquímicos das BIFs dos vários níveis estratigráficos nos permite entender estas variações paleoclimáticas de forma holística е comparativa. É possível notar que a correlação diretamente proporcional entre Al₂O₃ vs. TiO₂ apresentada por Brando Soares et al. (2017) para as BIFs Biquinho, se expande para os demais níveis estratigráficos analisados, o que significa presença de contribuição detrítica na formação das BIFs (Basta et al., 2011; Ewers and Morris, 1981). As amostras 7, 9, 10, 13, 15, 24, 25, 29, 30, 31, 36, 40 e 46, por sua vez, apresentam uma contribuição detrítica superior em sua composição, mas ainda podem ser associadas a mesma fonte por serem colineares ao trend positivo (Fig.4).

O gráfico $Al_2O_3/(Al_2O_3 + FeO + MnO)$ vs. FeO/TiO₂ indica que as amostras 1, 3, 5, 34, 41 e 44 são as com menor contribuição detritica analisadas, sendo as mais próximas das BIFs formadas predominantemente por sedimentação essencialmente

química, e, portanto, consideradas para a análise de ETRs. As demais amostras indicam uma gradação desde baixa contribuição detrítica até alta contribuição detrítica, onde os valores de FeO/TiO₂ se aproximam mais do observado para rochas máficas e ultramáficas (vide Brando Soares *et al.*, 2017), sendo as amostras 15, 24, 29 e 31 as mais influenciadas (Fig.4).

Apesar do alvo Aparição estar em um nível estratigráfico equivalente ao Biquinho (Fig.3), sendo apenas uma variação lateral (Santos, 2017), o grupo de amostras que mais se assemelha a este último em relação ao seu comportamento geoquímico é o que se refere ao nível Pimentão. Assim como no nível Biquinho, as amostras do Pimentão apresentam grande influência detrítica cuja fonte está associada a às rochas metavulcâncias máficas e ultramáficas. Pode-se inferir também que as BIFs do nível São Francisco diferem das demais pela pouca quantidade de material clástico (Fig.4). Esta diferenca pode significar a total cessação do vulcanismo durante a deposição das BIFs nos andares estratigráficos mais superiores além de estar em consonância com a características distintas do vulcanismo da Unidade Inferior (máfico a ultramáfico -Biquinho, Pimentão, Aparição) em relação ao registrado Unidade Intermediária na (intermediário - São Francisco) (Fig.3).

A atividade vulcânica de característica máfica- ultramáfica foi predominante durante a deposição da Unidades Inferior, diminuindo em volume em direção aos estratos mais novos do Greenstone Belt Pitangui (Fig.3). De forma oposta, há um maior registro de fluxos turbidídicos no andar correspondente ao alvo São Francisco, interpretados como progradação desses leques por Brando Soares et al. (2017) e Faria (2017). Essa interpretação de continentalização do ambiente de deposição das BIFs é reforcado pela análise das rochas metavulcânicas, que apresentam uma evolução de magma komatiitico e basáltico para magma andesítico e dacitico (Brando Soares et al., 2017; Faria, 2017). A camadas de BIFs do intervalo São Francisco são menos espessas (Fig.3), possivelmente indicando que as condições próprias para a precipitação destas rochas prevaleceram por menos tempo se comparado à Unidade Inferior ou que havia menos disponibilidade de material bioquímico necessário para sua formação, inclusive bactérias. No andar São Francisco, BIFs formaram-se em ambiente de bacia estritamente faminta, com ausência de sedimentação clástica ou vulcanismo.

5.2 ELEMENTOS TRAÇOS E PULSOS DE OXIGENAÇÃO NO ARQUEANO

As relações dos ETRs e Y nas BIFs permitem interpretações acerca da composição química dos mares Pré-cambrianos (Bau and Möller, 1993; Zand and Nozaki, 1996; Wang et al., 2014) quando comparadas as dos mares atuais (Fig.5). Brando Soares et al. (2017) interpretou as anomalias positivas de Eu dos (característica comum sedimentos marinhos arqueanos conforme Klein, 2005) das BIFs do nível Biquinho com média de 1,98 (Tabela no Anexo). como sendo indicativo de que estas são BIFs do Tipo Algoma. A anomalia positiva de Eu, ocorre pela concentração elevada de Eu móvel no fluído enriquecido de sistemas hidrotermais que lixiviam rochas máficas e ultramáficas (Bau and Möller, 1993). Uma vez incorporado nas BIFs, junto ao ferro e sílica, se torna imóvel no metamorfismo e hidrotermalismo que ocorrem depois, refletindo mudanças na geodinâmica da crosta que serve como fonte do material que enriquece fluídos. Essa hipótese é reforçada quando somada à observação da estratigrafia da Unidade Inferior do Greenstone Belt Pitangui, constituída por máficas, ultramáficas e turbiditos, apontando para ambiente marinho profundo. Apesar da falta de análogos atuais para as formações ferríferas bandadas, Alexander et al (2008) observou que fluidos de black smokers atuais possuem assinatura semelhante a água do mar Arqueana. As anomalias positivas de Eu acentuadas, presente nos níveis Pimentão, Aparição e São Francisco, descartam a possibilidade das BIFs serem do tipo Lago Superior, pois segundo Huston e Logan (2004) e Han et al. (2014) a anomalia positiva de Eu ocorre apenas em BIFs formações ferríferas tipo Algoma.

Foram averiguadas anomalias negativas de Ce nas amostras 9,13, 17, 19, 22, 23, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40 e 44, entretanto as amostras 9, 13, 29, 30, 31 e 40 apresentaram elevada contribuição clástica em sua composição (Fig.4), logo não foram inclusas no resultado final já que anomalia poderia ser produto da rocha fonte do material clástico. Assim, deixa-se de considerar a amostra 9, que seria a única anomalia detectada no nível Aparição. Enquanto as amostras 17, 19, 22 e 23 caracterizam novas anomalias verdadeiras detectadas no Pimentão e as amostras 26, 27, 33, 34, 35, 37, 38 e 44 são concordantes aos resultados apresentados por Brando Soares *et al.* (2017).

A anomalia negativa verdadeira de Ce está diretamente ligada a ambientes oxidantes, na presença de oxigênio, onde Ce⁺³ é oxidado para Ce⁺⁴ (menos solúvel) que é removido da solução enquanto os demais ETRs, vizinhos e trivalentes. permanecem em solução partículas superficiais. associados a Α molécula, agora insolúvel, deixa de ser agregado às BIFs durante sua formação, induzida pela atividade de microorganismos (esses sendo os mesmo responsáveis pela liberação de oxigênio que altera a condição do Ce). Estas anomalias são raras, uma vez que há predomínio de ambientes anóxicos nos oceanos anteriores ao GEO (Bau and Dulski, 1996; Frei et al., 2008; Bekker et al., 2010; Planavsky et al., 2010), onde o oxigênio não era abundante em sua forma livre. A anomalia negativa de Ce é, no entanto, muito comum na água dos oceanos atuais.

Brando Soares et al. (2017) comparou a assinatura geoquímica ETR's e Y das BIF's Biquinho com a de demais BIF's Arqueanas como o Grupo Isua da Groelândia de 3,7-3,8 Ga (Frei and Polat, 2007; Bau and Alexander, 2009; Bolhar et al., 2004) e Grupo Hamersley da Austrália de 2,2 Ga (Pecoits et al., 2009). No entanto, estas ocorrências são mais semelhantes às BIF's São Francisco e Aparição. As BIFs Biguinho e Pimentão possuem padrões que mais se assemelham a BIFs encontradas no Cráton do Norte da China (Wang et al., 2014). Ocorrem também anomalias negativas de Ce em filitos ricos em magnetita da Formação Batatal, Supergrupo Minas, com sobreposição direta das BIFs da Formação Cauê, depositada a 2,65 Ga (Cabral et al., 2012; 2016 e Mendes et al., 2016), sendo posterior ao episódio de oxigenação de 2,86-2,78 Ga registrado no nível Biquinho (Fig.7) por Brando Soares et al. (2017).

Por fim, o pico de oxigenação registrados por Brando Soares *et al.* (2017), para o nível Biquinho estende-se para as rochas do nível Pimentão (Fig.7). Já as BIFs do alvo São Francisco, permitem interpretar uma variação nas condições de sedimentação e química da água na bacia Pitangui. Assim, este trabalho

Ga delimitado por Brando Soares et al. (2017).

reforça a evidência de oxigenação no limite Meso-Neoarqueno, no intervalo de 2,86-2,78

Figura 7

Coluna estratigráfica em detalhe do Greenstone Belt Pitangui modificado de Brando Soares et al. (2017) com demarcações das anomalias positivas e negativas de Ce dos níveis Biquinho e Pimentão. Plotados a profundidade relativa a os testemunhos de sondagem de onde foram amostradas BIFs para geoquímica de rocha total e datação por Brando Soares et al. (2017).

6. CONCLUSÕES

As BIFs Pimentão (localizada a baixo do corpo Biquinho), Aparição (lateralmente continua ao Biquinho) e São Francisco (localizada a cima do corpo Biquinho), quando comparadas. apresentam variações composicionais, que indicam uma mudança, com o tempo geológico, na influência de sedimentos clásticos oriundos de rochas máficas durante sua deposição. Pôde-se averiguar que as amostras da BIFs Biquinho registram condições desde de baixa contribuição clástica até elevada, assim como BIFs Pimentão. As BIFs Aparição, no entanto,

só apresentam amostras com influência mediana de rochas clástica máficas e ultramáficas, e as BIFs São Francisco apresentam apenas uma baixa influência de material clástico máfico. Deve-se levar em consideração que poucas amostras foram coletadas dos níveis Aparição e São Francisco, mais analises com um grupo maior de amostras são necessárias para comprovar esses zoneamentos composicionais nos trends geoquímicos apresentados neste trabalho (Fig.4).

Pode-se inferir pela associação dos litotipos presentes na estratigrafia do greenstone belt Pitangui (Fig.3;7) que as BIFs depositaram em momentos de hiatos de deposição clástica e também vulcanismo. A influência de atividade vulcânica diminui conforme se avança temporalmente no registro, e junto dela, os intervalos de BIFs se tornam cada vez mais raros até um ponto em que há predominância de fluxos turbidíticos.

Rochas originadas da precipitação química com contribuição clástica de rochas máficas e ultramáficas, as formações ferríferas bandadas do Greenstone Belt Pitangui, aqui apresentadas, indicam condições da hidrosfera meso- a neoarqueana. Apesar dos grupos amostrais não se diferenciarem muito em relação aos dos padrões de ETR e Y de outras BIFs do tipo Algoma de idade arqueana, a presença de anomalias negativas verdadeiras de Ce se destaca para dois grupos de amostras; Pimentão e Biquinho (Fig.6). O nível de BIFs compreendido como Biquinho, já havia sido apresentado anteriormente como hospedeiro de anomalias negativas verdadeiras de Ce,

7. AGRADECIMENTOS

Este trabalho foi apoiado e financiado pela IAMGOLD Corporation, que autorizou a publicação de dados e interpretações apresentados aqui. Somos muito gratos aos Craig senhores McDougall (VPS. de Exploração da IMGOLD), Milton Guimarães Bueno do Prado e a toda a equipe da IAMGOLD que encorajou e contribuiu para fazer este trabalho possível. Nicollas Oliveira, Kathelyn Santos, Lorrana Roriz e Calvin Ferreira agradecem aos orientadores Atlas

8. REFERÊNCIAS

- Alexander B.W., Bau M., Andersson P., Dulski P. 2008. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. *Geochim. Cosmochim Acta* 72: 378–394.
- Alkmim F.F., Marshak S. 1998. Transamazonian Orogeny in the Southern São Francisco Craton, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. *Precambrian Res*, **90**: 29–58.
- Alkmim F.F. 2012. Serra do Espinhaço e Chapada Diamantina. Geologia do Brasil. Beca, São Paulo: 236–244.
- Baltazar O.F., Zucchetti M. 2007. Lithofacies associations and structural evolution of the

inclusive, as mais antigas já registradas no Brasil, com cerca de 2,86 Ga, antecedendo o Grande Evento de Oxidação em 400 Ma. Anomalias semelhantes foram detectadas, neste trabalho no nível compreendido como Pimentão, que antecede estratigraficamente Biquinho, mas não no alvo Aparição que é contemporâneo e tampouco no alvo São Francisco, que é posterior. A partir destes resultados, infere-se que o pico de oxigenação teve duração temporal significativa de cerca de 80 Ma, considerando-se o topo da unidade inferior como limite. Este pulso oxigenante, no entanto, foi restrito a porções específicas da bacia arqueana, uma vez que não apresenta registro inequívoco em camadas lateralmente contínuas. A existência de anomalias negativas de Ce nas BIFs do nível Pimentão, desta forma, corrobora com as anomalias já descritas para o nível Biquinho, ambos presentes na localidade São Sebastião do greenstone belt Pitangui. Este conjunto de anomalias representam um dos primeiros episódios de flutuação rumo a uma atmosfera enriquecida em oxigênio.

Corrêa Neto e Mariana Brando Soares pela oportunidade e ensinamentos. Mariana Brando Soares agradece ao CNPq e à FAPERJ pelas bolsas de estudo concedidas ao seu projeto de doutorado. Agradecemos aos revisores que contribuíram para o aprimoramento deste artigo e em especial ao Prof. Júlio Wasserman (UFF) e à comissão do XVI Congresso Brasileiro de Geoquímica pela oportunidade de publicar este artigo.

Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: a review of the regional setting of gold deposits. *Ore Geol. Rev*, **32**: 471–499.

- Basta F.F., Maurice A.E., Fontboté L., Favarger, P. 2011. Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egtpt: Implications for the origin of Neoproterozoic BIF. *Precambrian Res.*, **187**: 277–292.
- Bau M., Alexander B.W. 2009. Distribution of high field strength elements (Y, Zr, REE, Hf, Ta, Th, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean. *Precambrian Res.*, 174: 337–346.

- Bau M., Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Pengeand Kuruman iron-formations, Transvaal Supergroup, South Africa. *Precambrian Res.*, **79**: 37–55.
- Bau M., Möller P. 1993. Rare earth element systematics of the chemically precipitated component in early Precambrian iron formations and the evolution of the terrestrial atmosphere– hydrosphere–lithosphere system. *Geochim. Cosmochim Acta*, **57**: 2239–2249.
- Bekker A., Holland H.D., Wang P.L., Rumble III D., Stein H.J., Hannah J.L., Coetzee L.L., Beukes N.J. 2004. Dating the rise of atmospheric oxygen. *Nature*, **427**: 117–120.
- Bolhar R., Kamber B.S., Moorbath S., Fedo C.M., Whitehouse M.J. 2004. Characterization of early Archaean chemical sediments by trace elemento signatures. *Earth Planet. Sci. Lett.*, 222: 43–60.
- Brando Soares M., Corrêa Neto A.V., Zeh A., Cabral A.R., Pereira L.F., Prado M.G.B., Almeida A.M., Manduca L.G., Silva P.H.M., Mabub R.O.A., Schlita T.M. 2017. Geology of the Pitangui greenstone belt, Minas Gerai, Brazil: Stratigraphy, geochronology and BIF geochemistry. *Precambrian Res.*, 291: 17-41
- Cabral A.R., Zeh A., Koglin N., Seabra Gomes Jr.
 A.A., Viana D.J., Lehmann B. 2012. Dating the Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65 Ga: depositional U-Pb age of zircon from a metavolcanic layer. *Precambrian Res.*, 204:40–45.
- Cabral A.R., Corrêa Neto A.V. 2015. Empirical Bi8Te3 and Bi2Te from the São Sebastião gold deposit, Brazil: implications for Lode-gold mineralization in Minas Gerais. *Can. Mineral.*, 53: 1061–1072.
- Cabral A.R., Lehmann B., Gomes A.A.S., Pašava, J. 2016. Episodic negative anomalies of cerium at the depositional onset of the 2.65-Ga Itabira iron formation, Quadrilátero Ferrífero of Minas Gerais, Brazil. *Precambrian Res.*, **276**: 101– 109.
- Chemale Jr. F., Dussin I.A., Alkmim F.F., Martins M.S., Queiroga G., Armstrong R., Santos M.N. 2012. Unravelling a Proterozoic basin history through detrital zircon geochronology: The case of the Espinhaço Supergroup, Minas Gerais, Brazil. *Gondwana Res.*, **22**: 200–206.
- Condie K.C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. *Chem. Geol.*, **104**: 1–37.
- Dorr J.V.N. 1969. Physiographyc, sratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. US Government Printing Office.
- Eriksson K.A., Krapez B., Fralick P.W. 1994.
 Sedimentology of Archean greenstone belts: signatures of tectonic evolution. *Earth Sci. Rev.*, 37: 1–88.

- Ewers W.E., Morris R.C. 1981. Studies of the Dales Gorge member of the Brockman iron formation, Western Australia. *Econ. Geol.*, **76**: 1929–1953.
- Faria L. R. 2017. Litogeoquímica e estratigrafia de rochas metavulcânicas do alvo São Francisco, Greenstone Belt Pitangui, Minas Gerais. Tese de conclusão de curso, Instituto de Geociências, Universidade Federal do Rio de Janeiro, 102 p.
- Frei R., Polat A. 2007. Source heterogeneity for the major components of 3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation. *Earth Planet. Sci. Lett.*, **253**: 266–281.
- Frei R., Gaucher C., Poulton S.W., Canfield D.E. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. *Nature*, **461**: 250–253.
- Han C., Wenjiao X., Benxun S., Zhengle C., Xiaohui, Z., Songjian A., Jien Z., Zhiyong Z., Bo W., Dongfang S., Zhongmei W. 2014. Neoarchean Algoma-type banded iron formations from Eastern Hebei, North China Craton: SHRIMP U-Pb age, origin and tectonic setting. *Precambrian Res.* 251: 212–231.
- Hartmann L.A., Endo I., Suita M.T.F., Santos J.O.S., Frantz J.C., Carneiro M.A., McNaughton N.J., Barley M.E. 2006. Provenance and age delimitation of Quadrilátero Ferriífero sandstones based on zircon U-Pb isotopes. J. South Am. Earth Sci. 20: 273–285.
- Holland H.D., 2006. The oxygenation of the atmosphere and oceans. *Philos. Trans. R.Soc. Lond.*, **361**: 903–916.
- Huston D.L., Logan G.A. 2004. Barite BIF and bugs: evidence for the evolution of the Earth's early hydrosphere. *Earth Planet. Sci. Lett.*, **220**: 41–5.
- Kato Y., Kano T., Kunugiza K. 2002. Negative Ce anomaly in the Indian banded iron formations: evidence for the emergence of oxygenated deepsea at 2.9-2.7 Ga. *Resour. Geol.*, **52**: 101–110.
- Klein C. 2005. Some precambrian banded ironformations (BIFs) from around theworld: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Mineral., 90: 1473–1499.
- Koglin N., Zeh A., Cabral A.R., Seabra Gomes Jr. A.A., Corrêa Neto A.V., Brunetto W. J., Galbiatti H.F. 2014. Depositional age and sediment source of the auriferous Moeda Formation, Quadrilátero Ferrífero of Minas Gerais, Brazil: new constraints from U-Pb–Hf isotopes in zircon and xenotime. *Precambr. Res.*, 255: 96–108.
- Kotschoubey B., Villas R.N., Aires B. 2016. Chloritites of the Tocantins Group, Araguaia fold belt, central-northern Brazil: vestiges of basaltic magmatism and metallogenetic implications. J. S. Am. Earth Sci., 69: 171–193.
- Lyons T.W., Reinhard C.T., Planavsky N.J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. *Nature*, **506**: 307-315.

- Macedo G.P.S., Caetano Filho S., Babinski M., Enzweiler J. 2018. Rare earth elements of carbonate rocks from the Bambuí Group, southern São Francisco Basin, Brazil, and their significance as paleoenvironmental proxies. *Precambr. Res.*, **305**: 327-340.
- Machado N., Carneiro M.A. 1992. U-Pb evidence of late Archean tectono-thermal activity in the southern São Francisco shield, Brazil. Can. J. *Earth Sci.*, **29**: 2341–2346.
- Machado N., Schrank A., Noce C.M., Gauthier G. 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences: implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. *Earth Planet. Sci. Lett.*, **141**: 259–276.
- McLennan S.M. 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. *Reviews in Mineralogy and Geochemistry*, **21**: 169–200.
- Mendes M., Lobato L.M., Kunzmann M., Halverson G.P., Rosière C.A. 2016. Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil. *Mineralium Deposita*, **52**: 159-180.
- Noce C.M., Dantas E.L., Lobato L.M., Zucchetti M., Baltazar O.F. 2002. Múltiplos eventos de vulcanismo no greenstone belt Rio das Velhas, Quadrilátero Ferrífero (MG): novos dados U-Pb, implicações geotectônicas e metalogenéticas. 41th Congresso Brasileiro de Geologia. Sociedade Brasileira de Geologia. João Pessoa, 522.
- Noce C.M., Zucchetti M., Baltazar O.F., Armstrong R., Dantas E.L., Renger F.E., Lobato L.M. 2005. Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas greenstone belt (Quadrilátero Ferrífero, Brazil): U-Pb zircon dating of volcaniclastic graywackes. *Precambr. Res.*, 141: 67–82.
- Noce C.M., Tassinari C., Lobato L.M. 2007. Geochronological framework of the Quadrilátero Ferrífero, with emphasis on the age of gold mineralization hosted in Archean greenstone belts. *Ore Geol. Rev.*, **32**: 500–510.
- Pecoits E., Gingras M.K., Barley M.E., Kappler A., Posth N.R., Konhauser K.O. 2009. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. *Precambr. Res.*, **172**: 163–187.
- Posth N.R., Konhauser K.O., Kappler A. 2013. Microbiological processes in banded iron formation deposition. *Sedimentology*, **60**: 1733– 1754.
- Raposo, F.O., 1996. Formações ferríferas e metassedimentos químicos de áreas selecionadas do Quadrilátero Ferrífero e suas relações com níveis rudáceos. Dissertação de

Mestrado, Instituto de Geociências, Universidade Federal de Minas Gerais, 71 p.

- Reis L.A., Martins-Neto M.A., Gomes N.S., Endo I., Jordt-Evangelista H., 2002. A Bacia de antepaís paleoproterozóica Sabará, Quadrilátero Ferrífero, Minas Gerais. *Rev. Bras. Geo.*, 32: 27–42.
- UFMG CPRM, Belo Horizonte. Programa Geologia do Brasil. Folha Pará de Minas, SE-23-Z-CI. Romano A. 2007. Escala 1:100.000, relatório final: 72p.
- Romano R., Lana C., Alkmim F.F., Stevens G., Armstrong R. 2013. Stabilization of the southern portion of the São Francisco craton, SE Brazil, through a long-lived period of potassic magmatism. *Precambr. Res.*, 224: 143–159.
- Santos K. N. S. 2017. Caracterização estratigráfica e geoquímica das rochas metavulcânicas do alvo Aparição, Onça do Pitangui, MG. Dissertação de conclusão de curso, Instituto de Geociências, Universidade Federal do Rio de Janeiro, 72 p.
- Schirrmeister B.E., Gugger M., Donoghue P.C.J. 2015. Cyanobacteria and the Great Oxidation Event: Evidence from Genes and Fossils. *Paleontology*, 58: 769-785.
- SRK consulting and IAMGOLD Corporation, 2014. Independent Technical Report for the São Sebastião Gold Deposit, Pitangui Project, Brazil.
- Taylor S.R., McLennan S.M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.
- Teixeira W., Ávila C.A., Dussin I.A., Corrêa Neto A.V., Bongiolo E.M., Santos J.O., Barbosa N.S. 2015. A juvenile accretion episode (2.35–2.32 Ga) in the Mineiro belt andits role to the Minas accretionary orogeny: zircon U-Pb–Hf and geochemical evidences. *Precambr. Res.*, 256: 148–169.
- Thurston P.C., Ayer J.A., Goutier J., Hamilton M.A. 2008. Depositional gaps in Abitibi greenstone belt stratigraphy: a key to exploration for syngenetic mineralization. *Econ. Geol.*, **103**: 1097–1134.
- Trendall A.F., Blockley J.G. 1970. The Iron-Formations of the Precambrian Hamersley Group. Western Australia Geological Survey, Western Australia Bulletin, 119 p.
- Wang C., Lianchang Z., Caiyun L., Yanpei Dai. 2014. Petrology and geochemistry of the Wangjiazhuang banded ironformation and associated supracrustal rocks from the Wutai greenstone belt in the North China Craton: implications for their origin and tectonic setting. *Precambr. Res.*, 255: 603–626.
- Zalán P.V., Silva P.C.R. 2012. Bacia do São Francisco Beca, São Paulo: 245–247.
- Zhang J. & Nozaki Y. 1996. Rare Earth elements and yttrium in seawater: ICPS-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of western South Pacific Ocean. *Geochimica et Cosmochimica Acta*, **60(23)**: 4631-4644.

ANEXO - Valores de análise de geoquímica para rocha total (elementos maiores, elementos traços e elementos terras raras) em BIFs do *Greenstone Belt* Pitangui, Quadrilátero Ferrífero, Minas Gerais, em quatro diferentes níveis estratigráficos (Pimentão, Biquinho, Aparição e São Francisco).

Níveis Estratigráficos	São Francisco	São Francisco	São Francisco	Aparição	Aparição	Aparição
Louungiunooo	1	2	3	4	5	6
Amostras	FSF003	FSF005	FSF005	FAP31	FAP31	FAP31
Profundidade	231.11m	123 08m	127.21m	112.80m	156.85m	158 00m
Fe ₂ O ₃ %	41,71	44,8	55,98	42,44	48,65	50,62
SiO ₂ %	48,51	49,52	37,28	53,58	44,18	46,08
Al ₂ O ₃ %	0.09	0.41	0.05	0.66	0.17	0.75
CaO%	4,14	0,57	2,01	1,78	3,32	1,46
Cr ₂ O ₃ %	0.005	0.005	0.005	0.01	0.005	0.01
K ₂ O%	0,02	0,14	0,04	0,06	0,01	0,02
MgO%	2,34	2,44	2,15	1,66	1,96	1,67
MnO%	0,3	0,12	0,16	0,18	0,09	0,14
Na ₂ O%	0.005	0.03	0.005	0.05	0.02	0.03
P2O5%	0.18	0.18	0.22	0.24	0.11	0.08
TiO ₂ %	0.01	0.04	0.01	0.02	0.005	0.03
LOI%	2.09	1.24	2.58	0.205	1.02	0.205
Total	99.4	99,495	100.49	100.885	99.54	101.095
	3	Elei	mentos Traços (ppi	n))-	-)
Ag	0,25	0,25	0,25	0,25	0,25	0,25
As	0,7	5,8	30,7	1,7	0,6	0,4
Ba	5,4	5,8	1,9	13,5	8,1	5,8
Bi	0,09	0,03	0,02	0,05	0,005	0,005
Cd	0,25	0,25	0,25	0,25	0,25	0,25
Со	8	3	3	15	7	8
Cs	0,4	2,73	0,19	3,97	0,96	1,14
Cu	26	4	6	37	11	9
Ga	2,1	2,5	1,4	2,4	1,9	2
Hf	0,1	0,3	0,1	0,1	0,1	0,2
Hg	0,007	0,011	0.016	0.01	0,011	0,011
Mo	0,5	0,5	0,5	0,5	0,5	1
Nb	0,1	0,8	0,1	0,6	0,1	0,3
Ni	9	12	3	26	6	20
Pb	1	1	1	1	1	1
Rb	1,6	9	1,6	5,1	1,7	1,6
Sb	0.29	1.72	0.88	0.27	0.14	0.14
Sc	0,5	1	0,5	1	0,5	1
Se	0.1	0.1	0.1	0.1	0.1	0.1
Sn	3	2	1	1	1	1
Sr	25.5	5.5	21.9	17	23	8.6
Та	0,05	0,05	0,05	0,1	0,05	0,1
Th	0.09	0.4	0.025	0.42	0.22	0.48
T1	0.01	0.1	0.01	0.03	0.01	0.01
U	0,05	0,09	0,025	0,13	0,06	0,15
V	2.5	11	2.5	2.5	2.5	2.5
W	0.21	0.42	0.25	0.23	0.22	0.33
Zn	91	68	76	38	31	47
Zr	4	7	2	7	3	7
			ETR (ppm)			
Ce	3,9	6,3	4,1	12,5	3,3	4,1
Dy	0,45	0,66	0,86	2,1	0,55	0,48
Er	0,34	0,37	0,4	1,43	0,42	0,31
Eu	0,29	0,33	0,49	0,43	0,1	0,09
Gd	0,56	0,67	1,13	2,16	0,51	0,4
Но	0,1	0,16	0,15	0,48	0,15	0,08
La	1,9	3,3	2	6,2	1,7	2,3
Lu	0,04	0,06	0,03	0,15	0,04	0,03
Nd	1,6	3,1	2,5	6,8	1,6	1,8
Pr	0,38	0,75	0,51	1,55	0,34	0,46
Sm	0,48	0,71	0,78	1,49	0,41	0,46
Tb	0,07	0,15	0,15	0,34	0,07	0,06
Tm	0,03	0,08	0,06	0,19	0,08	0,04
Y	3,3	4,7	5,8	14,5	6	3,8
Yb	0,33	0,44	0,35	1,18	0,43	0,33
ETR+Y	13,77	21,78	19,31	51,5	15,7	14,74
(Eu/Eu*)Sn	3,303303375	2,204921383	3,098997464	1,323748515	1,26039103	1,109564202
(Pr/Pr*)Sn	0,89476947	0,995804403	0,922249403	0,981686778	0,868651022	0,9960363
(Ce/Ce*)Sn	1,056229764	0,923924247	0,935533978	0,929637878	0,998877921	0,91728315

Níveis						
Estratigráficos	Aparição	Aparição	Aparição	Aparição	Aparição	Pimentão
	7	8	9	10	11	12
Amostras	FAP31	FAP31	FAP31	FAP31	FAP31	FJG110
Profundidade	163.90m	164.50m	172.55m	177.06m	179.80m	277.34m
Fe ₂ O ₂ %	43 43	47.64	40.11	47.17	51.96	39.55
SiQ.%	46 77	47.98	48.18	43.97	42.28	54.26
A1 O %	2.24	1 46	2.67	1.07	0.83	0.81
$A1_2O_3/_0$	2,24	1,40	2,07	1,97	0,85	0,01
CaO%	3,41	0,89	3,57	2,35	2,22	2,35
$Cr_2O_3\%$	0,01	0,01	0,01	0,01	0,01	0,005
K ₂ O%	0,21	0,11	0,22	0,03	0,05	0,13
MgO%	2,49	2,02	2,52	2,38	2,35	1,48
MnO%	0,07	0,06	0,39	0,2	0,22	0,13
Na ₂ O%	0.07	0.04	0.18	0.005	0.03	0.01
P.O.%	0.09	0.09	0.08	0.09	0,09	0.09
TiO.%	0,05	0,07	0.1	0,05	0,03	0,02
1102/0	0,13	0,04	0,1	0,00	0,03	0,02
LOI%	1,13	0,205	1,56	1,5/	0,56	0,69
Total	100,07	100,545	99,59	99,805	100,63	99,525
		Ele	ementos traços (pj	om)		
Ag	0,25	0,25	0,25	0,25	0,25	0,25
As	0,7	0,4	87,1	20,5	6,9	5,5
Ba	33.2	52.6	491	169	10.2	36.5
Bi	0.005	0.005	0.2	0.13	0.04	0.38
Cd	0,005	0,005	0,2	0,15	0,04	1
Cu	0,23	0,23	1,1	1	0,0	1
Co	13	13	15	8	5	2
Cs	2,67	3,92	10,3	1,19	3,33	6,12
Cu	149	24	115	27	3	6
Ga	5,9	4,7	7,9	6,3	5,1	3,4
Hf	0,7	0,3	0,7	0,8	0,3	0.2
Hg	0.016	0.011	0.01	0.007	0.014	0.018
Mo	1	1	1	1	0.5	0.5
Nb	1 /	0.8	1 5	1 9	0,5	0,5
IND N.	1,4	0,8	1,5	1,0	0,0	0,0
N1	24	29	61	39	29	21
Pb	I	I	I	5	1	1
Rb	10,3	7,1	12,4	3,1	4,1	9,2
Sb	0,18	0,25	0,67	0,6	0,95	0,1
Sc	5	2	4	2	1	1
Se	0.1	0.1	0.6	0.1	0.1	0.1
Sn	3	2	5	4	4	2
Sr	18.0	85	28 1	50 1	21.3	20.2
51	0.1	0,5	20,1	0.2	21,5	20,2
1a T1	0,1	0,1	0,2	0,2	0,1	0,1
In	0,66	0,62	1,13	1,55	0,52	0,28
TI	0,14	0,09	0,23	0,09	0,07	0,07
U	0,18	0,25	0,4	0,5	0,17	0,12
V	20	6	11	10	2,5	6
W	0,22	0.33	0,22	0.28	0,17	0,24
Zn	66	76	866	439	615	163
Zr	31	11	24	32	12	6
	01		ETR (nnm)	52		Ũ
Ca	0	7 4	0 7	12.0	50	26
	0	/,4	0,/	13,0	3,0	2,0
Dy	1,22	0,6/	0,88	1,03	0,8	0,4/
Er	0,87	0,43	0,56	0,64	0,48	0,37
Eu	0,39	0,15	0,32	0,32	0,28	0,1
Gd	1,35	0,74	0,97	1,1	0,71	0,43
Но	0,29	0,13	0,2	0,21	0,15	0,09
La	4.3	3.3	4.4	6.6	3.2	1.5
Lu	0 12	0.05	0 09	0.09	0.06	0.05
Nd	1 2	26	30	50	0,00 7 7	1 2
D.	+,2 0.06	2,0	5,5	J,7 1 45	2,1	1,2
rı C	0,90	0,72	1,02	1,43	0,00	0,24
Sm	1,05	0,63	0,96	1,45	0,73	0,21
Tb	0,19	0,08	0,14	0,17	0,12	0,05
Tm	0,11	0,04	0,05	0,11	0,05	0,06
Y	9,9	5	6,4	7,2	5,2	3,8
Yb	0,75	0,39	0,64	0,58	0,46	0,43
ETR+Y	33.7	22.33	29.23	40.63	21.4	11.6
(Eu/Eu*)Sn	1 877125224	1 361623869	1 822512207	1 305529628	2 01021019	2 142741704
(Pr/Pr*)Sn	0 9600022	0.961212240	1 02082002	0.945360100	0 02010270	0 70860087
(Γ_{1}/Γ_{1}) (Γ_{2}/Γ_{2}) $(\Gamma_{2}/\Gamma_{2}$	0,70700220	1 107200004	1,02702003	1 0200204	0,20012022	0,12002001
(Ce/Ce ⁺)Sh	0,908330632	1,10/200994	0,94/320433	1,0289206	0,71733/033	0,90313//03

Níveis	Pimentão	Pimentão	Pimentão	Pimentão	Pimentão	Pimentão
Estratigráficos	12	1 111011110	1.5	1 1110	17	10
<u> </u>	13	14	15	16	17	18
Amostras	FJG110	FJG110	FJG110	FJGIIO	FJG117	FJGI17
Frorundidade	286,28m	294,40m	308,39m	312,60m	350,70m	355,22m
$Fe_2O_3\%$	43,2	54,58 41.00	39,90 46.27	47,52	48,52	47,52
$SIO_2 70$	44,75	41,09	40,57	42,24	47,5	49,92
$A_{12}O_{3}$	2,17	0,70	4,04	0,89	1,52	0,49
$CaO \frac{1}{6}$	4,19	2,40	4,43	0,005	0,37	0,48
K-0%	0.43	0,005	0,02	0.13	0.19	0,005
MgO%	1.05	0,08	0,39	1.24	3.00	0,07
MnO%	0.24	0,49	0.28	0.22	0.28	0.13
Na ₂ O%	0.24	0,02	0.23	0,22	0.05	0.01
$P_2 O_5 \%$	0.07	0.08	0.09	0.09	0,09	0.1
TiO ₂ %	0.08	0.03	0.16	0.03	0.05	0.02
LOI%	2 75	0.29	1 41	2 5	0 205	0 205
Total	99.12	99,995	100.06	100 125	101 875	100 69
1000	<i>,</i>	Ele	mentos Tracos (p	pm)	101,070	100,09
Ag	0.25	0.25	0.25	0.25	0.25	0.25
As	151.5	0.5	250.1	2.7	9.4	0.3
Ba	80.7	11.9	99	29.9	50.2	18
Bi	0,81	0,54	0,64	0,62	0,11	0.02
Cd	1	0,25	0.7	0,5	0,6	0.9
Co	15	2	10	2	8	5
Cs	30	4,81	26,2	8,43	7,46	5,55
Cu	26	68	39	9	45	7
Ga	9,1	4,5	9	4	5,2	3,5
Hf	0,5	0,2	0,8	0,3	0,3	0,2
Hg	0,01	0,0025	0,005	0,014	0,016	0,01
Mo	1	0,5	1	0,5	1	0,5
Nb	1,3	0,6	2,3	0,5	0,9	0,5
Ni	66	18	89	23	40	16
Pb	1	1	1	1	1	1
Rb	30,5	6,9	36,1	10,2	12,8	6,4
Sb	0,22	0,08	0,25	0,09	0,1	0,18
Sc	3	1	5	1	2	1
Se	0,3	0,1	0,4	0,1	0,1	0,1
Sn	4	2	5	2	2	2
Sr	23	22	26,3	35,1	8,6	5,5
Та	0,1	0,1	0,2	0,1	0,1	0,1
Th	1,12	0,49	2,05	0,45	0,84	0,4
Tl	0,17	0,07	0,35	0,06	0,09	0,03
U	0,26	0,11	0,52	0,16	0,17	0,14
V	21	9	36	11	18	9
W	0,25	0,27	0,25	0,37	0,22	0,27
Zn	338	91	551	110	144	164
Zr	16	/	27	/	10	5
C	10.2	5.0	EIR (ppm)	E 1	65	2
Ce D	10,2	5,9	15,8	5,1 0.45	0,5	2 0.22
Dy E-	0,/	0,4	1,29	0,45	0,7	0,32
Er En	0,04	0,24	0,74	0,30	0,49	0,20
Eu	0,34	0,23	0,34	0,2	0,51	0,09
Uu Uo	1,02	0,31	1,42	0,47	0,0	0,24
по Го	5 1	0,1	0,23	0,1	0,14	0,09
La	5,1 0.07	5,2	0,5	2,0 0.04	<i>3,3</i> 0,07	0,04
Nd	0,07 4 4	2 8	6.8	2 5	2 8	0,04
Dr	т,т 1 21	2,0	1.87	2,5	0.77	0,7
Sm	1.02	0.45	1,02	0.49	0.63	0.13
Th	0.13	0,45	0.2	0.07	0.12	0.04
Tm	0.1	0.03	0,2	0.06	0.08	0.05
Y	59	3 5	8	39	5	2.8
Yh	0,5	0 17	0 59	0 17	0 34	0 24
ETR+Y	31.54	18.36	47.38	17.31	22.25	7.98
(Eu/Eu*)Sn	1,904105957	2,97020461	2,286467066	2,247238623	2,436784221	2,748263023
(Pr/Pr*)Sn	1,06254103	1,011702172	1,032947072	0,986095116	1,061802235	0,890670935
(Ce/Ce*)Sn	0,947293368	0,909205183	0,926174596	0,907199818	0,913272158	1,215928999

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Níveis Estratigráficos	Pimentão	Pimentão	Pimentão	Pimentão	Pimentão	Pimentão
	Lottatigraficos	19	20	21	22	23	24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Amostras	FJG117	FJG117	FJG117	FJG58	FJG58	FJG58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ₂ O ₃ %	44,99	50,68	46,15	37,61	44,95	42,23
$ \begin{array}{c} \mathrm{Al} \mathrm{CaO}^{*}_{9} & 1,4 & 1,75 & 0.95 & 0.62 & 1.27 & 4.04 \\ \mathrm{CaO}^{*}_{9} & 5.32 & 4.71 & 6.46 & 5.82 & 5.25 & 1.95 \\ \mathrm{CbO}^{*}_{9}_{9} & 0.01 & 0.01 & 0.01 & 0.005 & 0.01 & 0.02 \\ \mathrm{M}_{0} \mathrm{M}^{*}_{9} & 1.38 & 1.46 & 1.19 & 0.9 & 1.62 & 0.98 \\ \mathrm{M}_{0} \mathrm{M}^{*}_{9} & 0.2 & 0.23 & 0.23 & 0.09 & 0.23 & 0.12 \\ \mathrm{N}_{8}_{0} \mathrm{M}^{*}_{9} & 0.1 & 0.09 & 0.07 & 0.07 & 0.09 & 0.09 \\ \mathrm{P}_{0} \mathrm{M}^{*}_{9} & 0.1 & 0.09 & 0.07 & 0.07 & 0.09 & 0.09 \\ \mathrm{P}_{0} \mathrm{M}^{*}_{9} & 0.05 & 0.07 & 0.03 & 0.02 & 0.06 & 0.13 \\ \mathrm{LO}^{*}_{9} & 2.48 & 1.14 & 3.93 & 3.45 & 2.62 & 2.2 \\ \hline \\ \mathrm{LO}^{*}_{1} & 2.48 & 0.6 & 1 & 0.7 & 0.8 & 0.6 \\ \mathrm{Ba} & 44.2 & 19.1 & 13.2 & 16.2 & 19.7 & 41.4 \\ \mathrm{Bi} & 0.2 & 0.18 & 0.13 & 0.08 & 0.15 & 0.21 \\ \mathrm{Cd} & 0.8 & 0.6 & 1 & 0.7 & 0.8 & 0.6 \\ \mathrm{Ba} & 44.2 & 19.1 & 13.2 & 16.2 & 19.7 & 41.4 \\ \mathrm{Cd} & 0.8 & 0.8 & 0.4 & 12 & 11 & 28 \\ \mathrm{Ca} & 6.2 & 7.5 & 3.9 & 3 & 4.3 & 8.4 \\ \mathrm{Hf} & 0.3 & 0.4 & 0.2 & 0.22 & 0.2 & 0.3 & 0.7 \\ \mathrm{Hg} & 0.011 & 0.01 & 0.017 & 0.023 & 0.006 & 0.008 \\ \mathrm{Mo} & 1 & 1 & 1 & 0.8 & 0.5 & 1 \\ \mathrm{Nb} & 0.8 & 1 & 0.8 & 0.5 & 0.5 & 1 \\ \mathrm{Nb} & 0.8 & 1 & 0.8 & 0.5 & 0.5 & 1 \\ \mathrm{Nb} & 0.8 & 1 & 0.8 & 0.5 & 0.9 & 2 \\ \mathrm{Nb} & 0.14 & 0.1 & 0.017 & 0.023 & 0.006 & 0.008 \\ \mathrm{Mo} & 1 & 1 & 1 & 1 & 0.8 & 0.5 & 0.5 & 1 \\ \mathrm{Nb} & 0.14 & 0.1 & 0.12 & 0.12 & 0.17 & 0.09 & 2 \\ \mathrm{Ni} & 45 & 48 & 27 & 10 & 26 & 55 \\ \mathrm{Pb} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \mathrm{Nb} & 0.14 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nb} & 0.14 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nb} & 0.14 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nc} & 0.14 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nc} & 0.14 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nc} & 0.14 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nc} & 0.16 & 0.044 & 0.044 & 0.05 & 0.068 & 0.17 \\ \mathrm{U} & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ \mathrm{Nc} & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nc} & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\ \mathrm{Nc} & 0.2 & 0.2 & 0.2 & 0.2 & 0.3 & 0.77 \\ \mathrm{Hg} & 0.066 & 0.044 & 0.041 & 0.05 & 0.068 & 0.17 \\ \mathrm{U} & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.5 \\ N$	SiO ₂ %	43,87	39,94	41,11	50,87	43,7	48,75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Al_2O_3\%$	1,4	1,75	0,95	0,62	1,27	4,04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CaO%	5,32	4,71	6,46	5,82	5,25	1,95
	Cr ₂ O ₃ %	0,01	0,01	0,01	0,005	0,01	0,02
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	K ₂ O%	0,17	0,08	0,06	0,09	0,16	0,25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MgO%	1,38	1,46	1,19	0,9	1,62	0,98
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MnO%	0,2	0,23	0,23	0,09	0,23	0,12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₂ O%	0,1	0,13	0,005	0,01	0,09	0,06
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$P_2O_5\%$	0.1	0.09	0.07	0.07	0.09	0.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TiO ₂ %	0.05	0.07	0.03	0.02	0.06	0.13
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LOI%	2.48	1.14	3.93	3.45	2.62	2.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total	100.07	100.29	100,195	99.555	100.05	100.82
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ele	ementos Tracos (p	pm)		,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag	0,25	0,25	0,25	0,25	0,25	0,25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	As	0.8	0.6	1	0.7	0.8	0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba	44.2	19.1	13.2	16.2	19.7	41.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi	0.2	0.18	0.13	0.08	0.15	0.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cd	0.8	0.8	0.9	1	0.8	0,21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Co	5	8	4	1	4	5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cs	9.01	215	23	6 48	12 55	144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12	2,15	2,5	12	12,55	17,7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu	62	30 7 5	4	12	11	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ga	0,2	7,5	5,9	<u> </u>	4,5	0,4 0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,5	0,4	0,2	0,2	0,5	0,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	нg	0,011	0,01	0,017	0,025	0,006	0,008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MO	1	1		0,5	0,5	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ND	0,8	1	0,8	0,5	0,9	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N1	45	48	27	10	26	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pb	I	1	l	I	I	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rb	11,3	3,7	4,3	/,I	11,4	17,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sb	0,14	0,1	0,12	0,12	0,17	0,09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sc	2	3	1	1	2	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Se	0,1	0,1	0,1	0,1	0,1	0,2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sn	3	3	3	2	2	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sr	23,5	19,7	27	31,3	23,1	8,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Та	0,1	0,1	0,1	0,1	0,1	0,2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Th	0,73	0,88	0,43	0,4	0,73	1,97
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T1	0,06	0,04	0,04	0,05	0,08	0,17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U	0,25	0,25	0,15	0,1	0,17	0,65
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	15	18	9	8	7	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	W	0,21	0,38	0,27	0,38	0,36	0,26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zn	126	221	129	89	69	188
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zr	11	13	8	7	10	26
$\begin{array}{ccccccc} Ce & 7,1 & 6,4 & 3,7 & 7,1 & 4,8 & 9 \\ Dy & 0,65 & 0,65 & 0,57 & 0,6 & 0,54 & 0,79 \\ Er & 0,39 & 0,41 & 0,33 & 0,38 & 0,44 & 0,39 \\ Eu & 0,26 & 0,26 & 0,19 & 0,3 & 0,23 & 0,23 \\ Gd & 0,83 & 0,76 & 0,54 & 0,88 & 0,56 & 0,72 \\ Ho & 0,12 & 0,14 & 0,12 & 0,13 & 0,13 & 0,12 \\ La & 3,7 & 3,2 & 2,1 & 4,2 & 2,4 & 4,5 \\ Lu & 0,05 & 0,04 & 0,03 & 0,05 & 0,04 & 0,05 \\ Nd & 3,4 & 3,2 & 1,6 & 3,3 & 2,2 & 4 \\ Pr & 0,9 & 0,78 & 0,41 & 0,88 & 0,57 & 1,02 \\ Sm & 0,8 & 0,7 & 0,42 & 0,85 & 0,5 & 0,76 \\ Tb & 0,12 & 0,13 & 0,09 & 0,1 & 0,1 & 0,1 \\ Tm & 0,06 & 0,06 & 0,04 & 0,07 & 0,08 & 0,08 \\ Y & 4,6 & 4,9 & 4,4 & 5,4 & 4,7 & 4,1 \\ Yb & 0,32 & 0,53 & 0,24 & 0,37 & 0,41 & 0,41 \\ ETR+Y & 23,3 & 22,16 & 14,78 & 24,61 & 17,7 & 26,27 \\ (Eu/Eu*)Sn & 1,759855919 & 1,858060459 & 2,13308852 & 2,065429054 & 2,233096013 & 1,711520832 \\ (Pr/Pr*)Sn & 1,075779573 & 1,010716135 & 0,991302097 & 1,068507073 & 1,031206983 & 0,99875143 \\ (Ce/Ce*)Sn & 0.897416569 & 0.934337504 & 0.916754655 & 0.851074629 & 0.946797947 & 0.969201974 \\ \end{array}$				ETR (ppm)			
$\begin{array}{c ccccc} Dy & 0.65 & 0.65 & 0.57 & 0.6 & 0.54 & 0.79 \\ Er & 0.39 & 0.41 & 0.33 & 0.38 & 0.44 & 0.39 \\ Eu & 0.26 & 0.26 & 0.19 & 0.3 & 0.23 & 0.23 \\ Gd & 0.83 & 0.76 & 0.54 & 0.88 & 0.56 & 0.72 \\ Ho & 0.12 & 0.14 & 0.12 & 0.13 & 0.13 & 0.12 \\ La & 3.7 & 3.2 & 2.1 & 4.2 & 2.4 & 4.5 \\ Lu & 0.05 & 0.04 & 0.03 & 0.05 & 0.04 & 0.05 \\ Nd & 3.4 & 3.2 & 1.6 & 3.3 & 2.2 & 4 \\ Pr & 0.9 & 0.78 & 0.41 & 0.88 & 0.57 & 1.02 \\ Sm & 0.8 & 0.7 & 0.42 & 0.85 & 0.5 & 0.76 \\ Tb & 0.12 & 0.13 & 0.09 & 0.1 & 0.1 & 0.1 \\ Tm & 0.06 & 0.06 & 0.04 & 0.07 & 0.08 & 0.08 \\ Y & 4.6 & 4.9 & 4.4 & 5.4 & 4.7 & 4.1 \\ Yb & 0.32 & 0.53 & 0.24 & 0.37 & 0.41 & 0.41 \\ ETR+Y & 23.3 & 22.16 & 14.78 & 24.61 & 17.7 & 26.27 \\ (Eu/Eu*)Sn & 1.759855919 & 1.858060459 & 2.13038852 & 2.065429054 & 2.233096013 & 1.711520832 \\ (Pr/Pr*)Sn & 1.075779573 & 1.010716135 & 0.991302097 & 1.068507073 & 1.031206983 & 0.999875143 \\ (Ce/Ce*)Sn & 0.897416569 & 0.934337504 & 0.916754655 & 0.851074629 & 0.946797947 & 0.969201974 \\ \end{array}$	Ce	7,1	6,4	3,7	7,1	4,8	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dy	0,65	0,65	0,57	0,6	0,54	0,79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Er	0,39	0,41	0,33	0,38	0,44	0,39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eu	0,26	0,26	0,19	0,3	0,23	0,23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gd	0,83	0,76	0,54	0,88	0,56	0,72
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Но	0,12	0,14	0,12	0,13	0,13	0,12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	La	3,7	3,2	2,1	4,2	2,4	4,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lu	0,05	0,04	0,03	0,05	0,04	0,05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nd	3,4	3,2	1,6	3,3	2,2	4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pr	0,9	0,78	0,41	0,88	0,57	1,02
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sm	0.8	0.7	0.42	0.85	0.5	0.76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tb	0.12	0.13	0.09	0.1	0.1	0.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tm	0.06	0.06	0.04	0.07	0.08	0.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Y	4.6	49	4 4	5 4	47	4 1
ETR+Y 23,3 22,16 14,78 24,61 17,7 26,27 (Eu/Eu*)Sn 1,759855919 1,858060459 2,133038852 2,065429054 2,233096013 1,711520832 (Pr/Pr*)Sn 1,075779573 1,010716135 0,991302097 1,068507073 1,031206983 0,999875143 (Ce/Ce*)Sn 0.897416569 0.934337504 0.916754655 0.851074629 0.946797947 0.969201974	Ŷh	0 32	0 53	0.24	0 37	0 41	0 41
(Eu/Eu*)Sn 1,759855919 1,858060459 2,133038852 2,065429054 2,233096013 1,711520832 (Pr/Pr*)Sn 1,075779573 1,010716135 0,991302097 1,068507073 1,031206983 0,999875143 (Ce/Ce*)Sn 0.897416569 0.934337504 0.916754655 0.851074629 0.946797947 0.969201974	ETR+V	23 3	22 16	14 78	24.61	17.7	26.27
$\begin{array}{ccccc} (2a) 2a & 2a & 350 & 1,05000015 & 1,05000015 & 2,0500002 & 2,00012 & 2,25000015 & 1,011520052 & 2,00012 & 2,25000015 & 1,011520052 & 2,00012 & 2,25000015 & 1,011520052 & 2,00012 & 2,000$	$(E_{II}/E_{II}*)S_{P}$	1 759855919	1 858060459	2 133038852	2 065429054	2 233096013	1 711520832
(Ce/Ce^*) Sn 0.897416569 0.934337504 0.916754655 0.851074629 0.946797947 0.969201974	(Pr/Pr*)Sn	1 075779573	1,010716135	0.991302097	1 068507073	1 031206983	0 999875143
	$(Ce/Ce^*)Sn$	0.897416569	0.934337504	0.916754655	0.851074629	0.946797947	0.969201974

Níveis Estratigráficos	Pimentão	Biquinho	Biquinho	Biquinho	Biquinho	Biquinho
Estratigraneos	25	26	27	28	29	30
Amostras	EJG58	FJG12	FJG12	FJG12	FJG12	FJG12
Fe ₂ O ₂ %	45 39	49 47	45.24	44 67	35 57	38.99
SiQ ₂ %	43.82	46.45	43 23	42 11	46.03	44 66
Al-O-%	2 02	0.74	0.66	1 47	4 25	2.06
$C_2O_3^{1/0}$	2,92	0,74	5.24	1,47	2,20	2,00
$CaO \frac{1}{6}$	4,14	1,43	5,24	5,12	5,20	2,90
$CI_2O_3/_0$	0,02	0,004	0,003	0,009	0,014	0,008
K ₂ 0%	0,26	0,09	0,05	0,2	1,16	0,74
MgO%	2,29	1,24	1,61	2,57	2,58	1,/6
MnO%	0,26	0,1	0,24	0,32	0,21	0,2
$Na_2O\%$	0,22	0,02	0,01	0,04	<0,01	<0,01
$P_2O_5\%$	0,09	0,08	0,09	0,12	0,07	0,06
TiO ₂ %	0,11	0,03	0,03	0,05	0,13	0,07
LOI%	0,46	0,3	3,5	3,2	6,5	8,3
Total	99,98	99,974	99,905	99,879	99,794	99,808
		Ele	mentos Traços (p	om)		
Ag	0,25	<0,1	2,41	23,07	<0,1	<0,1
As	0,8	<0,1	89,01	12,42	0,10	0,10
Ba	30,4	<0,1	2,68	23,74	<0,1	0,10
Bi	0,43	0.96	2550,12	103,32	27,48	0,11
Cd	1.2	1.30	4543.42	70.40	37.91	0.22
Co	8	<0.1	272.65	15.30	1.22	< 0.1
Cs	113	<01	44 62	46 64	0.41	0 10
Cu	34	0 10	41.76	3.06	1 53	0.20
Ga	79	<0.1	51.00	18 11	0.50	<0.1
Uf	0.5	<0,1	51,00	28.45	0,50	0.20
Ha	0,5	<0,1	107 72	20,45	0,20 <0.1	0,20
пg M-	0,012	<0,1	(2.02	3,03	<0,1	0,20
IVIO NIL	1 1 (<0,1	03,93	29,29	<0,1	0,10
IND NU:	1,0	<0,1	2,62	107,64	0,20	0,10
N1	61	25,08	0,60	0,55	8,53	0,30
Pb	1	33,12	1,45	0,66	3,73	0,10
Rb	14,5	66,04	3,20	0,72	88,72	0,21
Sb	0,11	107,23	3,68	0,35	58,71	0,32
Sc	4	65,66	3,18	1,97	113,00	0,42
Se	0,2	44,88	1,33	0,41	9,08	0,10
Sn	5	22,46	1,63	0,26	1,12	0,20
Sr	13,4	20,34	1,32	0,46	1,22	0,20
Та	0,2	71,25	4,17	1,07	65,55	1,21
Th	1,54	20,12	0,91	0,61	4,33	0,30
T1	0,14	46,28	1,51	1,20	17,50	0,10
U	0.38	<20	1,63	0,51	3,05	0.20
V	29	28.81	1.85	0.64	8.13	0.31
W	0.36	34,99	1.96	0.71	8.44	0.31
Zn	389	37.22	1 71	1 36	13.88	<0.1
Zr	21	47.85	1 93	1 19	7 33	0.10
			ETR (ppm)	-,		~ , - ·
Ce	8,9	4,11	5,69	7,02	5,86	2,38
Dv	1,06	0,44	0,29	1,08	0,98	0,91
Ēr	0,58	0,24	0,46	0,62	0,61	0,44
Eu	0.37	0.17	0.25	0.47	0.26	0.23
Gd	1 23	0.42	0 31	0.99	0.62	0.53
Ho	0.22	0.15	0.06	0,23	0.16	0.12
La	4 2	2 61	3 1 2	3 10	2 88	1 / 1
Lu I u	0.07	0.02	0.0/	0.08	2,00 0 00	1,71 0 05
Nd	4.1	0,03	2 2 2	2 20	0,05	0,05
Dr.	+,1 1 1	1,91	2,30	5,20	2,4J 0 77	0,34
r1 Sm	1,1	0,55	0,00	0,77	0,72	0,55
Sm Th	1,07	0,30	0,45	0,80	0,58	0,35
10 T	0,18	0,08	0,07	0,14	0,13	0,09
Im	0,11	0,06	0,04	0,08	0,06	0,05
Y	6,9	3,91	3,42	6,09	5,75	3,68
Yb	0,61	0,46	0,21	0,58	0,36	0,25
ETR+Y	30,7	15,50639392	17,74014006	25,24334668	21,49419697	11,38372796
(Eu/Eu*)Sn	1,79685481	2,191625791	2,935604896	2,989884739	2,062706627	2,88/028204
(Pr/Pr*)Sn	1,070450757	1,158250365	1,058552324	0,96043966	1,124711844	1,709944222
(Ce/Ce*)Sn	0,953501929	0,790293009	0,869849743	1,045160879	0,935677343	0,786611622

Níveis						
Estratigráficos	Biquinho	Biquinho	Biquinho	Biquinho	Biquinho	Biquinho
	31	32	33	34	35	36
Amostras	FJG12	FJG12	FJG12	FJG13	FJG13	FJG13
Fe ₂ O ₃ %	30,36	44,53	49,81	43,74	39,86	36,18
S1O ₂ %	53,26	44,93	42,39	47,8	52	44,29
Al ₂ O ₃ %	4,08	1,32	1,46	0,37	0,47	2,18
CaO%	2,25	3,95	3,31	3,62	3,89	4,04
$Cr_2O_3\%$	0,016	0,006	0,007	0,006	0,005	0,01
K ₂ O%	1,45	0,12	0,15	<0,01	<0,01	0,77
MgO%	2,19	2,6	1,12	1,96	1,79	2,4
MnO%	0,15	0,33	0,13	0,18	0,15	0,26
Na ₂ O%	<0,01	0,03	0,02	<0,01	<0,01	<0,01
P ₂ O ₅ %	0,07	0,08	0,07	0,09	0,08	0,07
TiO ₂ %	0,15	0,04	0,06	0,01	0,02	0,08
LOI%	5,9	2	1,4	2,1	1,7	9,6
Total	99,876	99,936	99,927	99,876	99,965	99,88
		Elei	nentos Traços (pp	om)		
Ag	4,11	2,71	7,82	15,15	0,44	0,24
As	5,69	4,97	2,48	11,07	0,29	0,46
Ba	7,02	6,40	14,65	7,22	1,08	0,62
Bi	5,86	11,82	29,29	931.88	0.98	0,61
Cd	2.38	15.49	15.92	1045.44	0.91	0.44
Co	2.96	8.26	3.98	98.02	1.10	0.49
Ċs	8.52	5.98	4.16	49.18	0.75	0.44
Cu	1 63	3,06	1.02	87 40	0.37	0.31
Ga	5 33	2 52	1.61	13.68	0.39	0.25
Uu Hf	11.28	9.25	2 74	20 57	0,39	0,54
На	106	2.03	2,74	7 42	0,89	0,54
Mo	+,00 5 25	2,05	2,54	7, 4 2 9.19	0,55	0,47
Nb	5,25	5,15	0,40	0,10 22.00	0,43	0,20
NU Ni	11,17	0,54	19,92	32,90	0,50	0,41 <0.1
INI Di-	1,00	<0,5	0,50	2,01	8,95 25 AC	<0,1
PD	2,07	<0,5	0,45	5,11	25,46	0,31
KD Cl	4,26	0,75	0,58	2,13	20,56	0,11
Sb	3,25	1,30	0,35	1,08	25,78	0,11
Sc	5,30	1,16	1,37	4,24	19,17	0,32
Se	2,04	<0,5	0,62	3,06	17,03	<0,1
Sn	<1	1,43	0,27	2,04	19,50	0,20
Sr	1,02	0,61	0,43	2,03	22,88	<0,1
Та	4,38	1,42	0,81	<1	53,16	0,11
Th	1,01	<0,5	0,51	3,02	12,68	<0,1
T1	2,01	<0,5	0,74	3,02	18,31	0,10
U	<1	<0,5	0,49	2,03	25,81	2,54
V	1,03	<0,5	0,61	3,09	43,12	<0,1
W	1,03	<0,5	0,44	2,06	42,60	<0,1
Zn	2,01	<0,5	1,24	2,01	19,01	0,10
Zr	3,05	<0,5	1,00	3,05	19,85	<0,1
			ETR (ppm)			
Ce	14,83	2,96	8,52	1,63	4,07	8,77
Dy	0,89	1,10	0,75	0,37	0,61	0,66
Er	0,41	0,49	0,44	0,31	0,29	0,82
Eu	0,37	0,24	0,30	0,13	0,19	0,32
Gd	1,03	0,77	0,84	0,33	0,51	0,92
Но	0,18	0,17	0,16	0,09	0,13	0,14
La	9,43	1,73	4,36	1,33	2,14	5,04
Lu	0,05	0,06	0,05	0,03	0,04	0,05
Nd	7,63	2,04	3,55	0,61	1,22	6,25
Pr	1.97	0.41	1.01	0.26	0.46	1.07
Sm	1.37	0.62	0.86	0.27	0.43	0.81
Th	0.15	0.13	0.14	0.06	0.08	0.13
Tm	0.07	0.06	0.08	0.04	0.04	0.09
V	5 20	7 45	6 29	3,57	2,0∓ 4 37	5.05
vh	0.30	0/12	0,39	034	-,,,, 0 38	0.45
ETR+V	1/1 036/122/	18 71775700	27 85/72280	0,34	1/ 0601051	31 00855854
(Fu/Fu*)Sp	1 62/725702	1 850512701	21,00410000 1 8/8200064	2,302/04093 2 281051511	2 2/02/02/02	2 06/112882
(Dr/Dr*)Sn	1,024/33/03	0.040207200	1 08/0158/1	1 /0802/77/	1 100027625	0.826262519
$(\Gamma_{e}/\Gamma_{e}^{*})$ Sn	0.702010617	0,277227/209	0.02/62/07	0.64/825726	0.948705602	0,020202010
	0,774710017	0,011302023	0,75405477	0,044023720	0,7070703072	0,0000001900

Níveis Estration (5	Biquinho	Biquinho	Biquinho	Biquinho	Biquinho	Biquinho
Estratigraficos	37	38	39	40	41	42
Amostras	EIG13	FIG13	EIG13	FJG13	EJG13	FIG13
Profundidade	243.47m	244.35m	245.10m	246.00m	249.79m	250.72m
Fe ₂ O ₃ %	41,13	49,18	52,55	50,38	51,56	39,72
SiO ₂ %	45,25	45,78	40,86	40,2	40,92	49,49
Al ₂ O ₃ %	1,06	0,72	1,42	2,41	0,2	0,65
CaO%	3,11	2,2	2,27	2,62	4,01	4,59
Cr ₂ O ₃ %	0,003	0,005	0,008	0,011	0,003	0,003
K ₂ O%	0,36	0,06	0,26	0,1	0,03	0,07
MgO%	1,35	1,18	1,67	2,08	1,29	2,1
MnO%	0,17	0,17	0,16	0,28	0,22	0,23
Na ₂ O%	<0,01	<0,01	<0,01	<0,01	0,01	0,02
P ₂ O ₅ %	0,08	0,06	0,07	0,1	0,09	0,08
TiO ₂ %	0,03	0,03	0,06	0,08	0,01	0,02
LOI%	7,3	0,6	0,6	1,6	1,6	2,9
Total	99,843	99,985	99,928	99,861	99,943	99,873
	o 1 -	Eler	nentos Traços (pp	m)	0.04	o 4 -
Ag	0,17	3,21	0,42	0,20	<0,01	0,15
As	0,25	2,38	0,31	0,21	<0,01	0,06
Ba	0,47	4,33	0,99	0,41	<0,01	0,21
Bi	0,26	11,82	0,62	1,17	<0,01	0,16
Cd	0,23	5,42	0,53	0,22	<0,01	0,12
Co	0,24	4,59	0,//	0,20	<0,01	0,1/
Cs Cu	0,30	4,8/	0,84	0,50	<0,01	0,10
Cu	0,13	1,03	0,53	0,10	<0,01	0,09
	0,20	5,12	0,37	<0,1	<0,01	0,08
	0,38	3,09	1,09	0,31	<0,01	0,17
пg Мо	0,22	2,84	0,01	0,30	<0,01	0,15
Nb	0,10	2,22	0,32	0,10	<0,01	0,10
NU Ni	0,28	5,05	1,10	1,11	<0,01	20.00
Ph	0,08	0,30	<0,1	0,00	0,10	29,09
Rb	0,07	2 56	1 28	0,04	0,10	43.67
Sh	0,15	0.54	0.97	0,00	<0.1	27.08
Sc	0,09	2 12	1.80	0,05	0.42	27,00 49,78
Se	0,13	0.61	<0.1	0.06	0.20	20.40
Sn	0.06	0.20	<0.1	0.04	<0.1	9 19
Sr	0.08	0.31	<0.1	0.04	<0.1	11.19
Ta	0.13	1.64	0.88	0.09	0.55	41.65
Th	0,07	0,40	<0,1	0,04	0,10	12,07
Tl	0,13	0,80	0,20	0.04	0,30	21,13
U	0,11	0,61	<0,1	0,05	<0,1	<8
V	0,07	0,62	<0,1	0,05	0,10	14,41
W	0,07	0,72	<0,1	0,03	0,21	12,35
Zn	0,12	2,01	<0,1	0,07	0,50	13,08
Zr	0,16	1,02	<0,1	0,07	0,31	24,43
			ETR (ppm)			_
Ce	6,22	5,33	8,95	11,28	4,06	5,97
Dy	0,85	0,39	0,75	0,89	0,59	0,39
Er	0,49	0,25	0,57	0,54	0,47	0,54
Eu	0,26	0,20	0,25	0,38	0,22	0,22
Gd	0,71	0,57	0,78	1,09	0,61	0,47
Но	0,17	0,08	0,09	0,17	0,13	0,11
La	3,65	2,82	4,63	6,20	2,44	2,88
Lu	0,05	0,02	0,04	0,07	0,04	0,01
Nd	2,47	2,11	6,54	3,96	2,54	2,37
Pr	0,74	0,61	1,20	1,51	0,51	0,64
Sm	0,64	0,51	0,74	1,10	0,49	0,61
Tb	0,15	0,07	0,13	0,15	0,11	0,07
Tm	0,08	0,04	0,04	0,08	0,05	0,05
Y	6.65	3.52	4.43	5.49	4.98	3.50
Yh	0.38	0.26	0.22	0.60	0.38	0.30
ETR+Y	23.51119131	16,8002401	29.37537538	33,50810248	17.61757879	18,12109888
(Eu/Eu*)Sn	1,81649805	2.1878839	1,727000107	1,90395948	2,098332221	2,07776405
(Pr/Pr*)Sn	1,110684092	1,07496726	0,887946483	1,326118416	0,913326641	0,998005996
(Ce/Ce*)Sn	0,871854305	0,935277416	0,876292156	0,849177918	0,84136058	1,015434344

Níveis					
Estratigráficos	Biquinho	Biquinho	Biquinho	Biquinho	Biquinho
	43	44	45	46	47
Amostras	FJG13	FJG14	FJG14	FJG14	FJG14
Profundidade	250,72m	190,43m	203,82m	212,80m	227,60m
Fe ₂ O ₃ %	41,51	49,26	49,39	46,83	45,83
SiO ₂ %	47,93	46,17	44,31	44,21	44,35
Al ₂ O ₃ %	0,66	0,42	1,14	2,57	1,63
CaO%	4,41	1,92	2,65	2,78	4,44
Cr ₂ O ₃ %	0,004	0,004	0,004	0,005	0,008
$K_2O\%$	0,09	0,03	0,12	0,2	0,14
MgO%	2,02	1,23	1,12	2,13	1,31
MnO%	0,22	0,31	0,09	0,26	0,16
$Na_2O\%$	0,03	<0,01	0,04	0,14	0,13
$P_2O_5\%$	0,08	0,08	0,08	0,08	0,09
TiO ₂ %	0,02	0,01	0,04	0,06	0,06
LOI%	2,9	0,6	1	0,6	1,8
Total	99,874	100,034	99,984	99,865	99,948
		Elementos T	raços (ppm)		
Ag	2,61	0,03	0,80	0,80	1,91
As	3,42	0,04	0,72	0,72	2,38
Ba	3,10	0,08	1,14	0,83	3,20
Bi	2,88	0,09	0,43	2,02	2,45
Cd	1,41	0,05	0,54	0,97	0,54
Co	1,73	0,06	0,71	0,71	2,04
Cs	4,36	0,05	0,61	0,91	3,55
Cu	1,33	0,03	0,41	1,43	0,61
Ga	2,82	0,02	0,70	1,31	2,11
Hf	6,20	0,07	0,71	1,63	3,96
Hg	2,44	0,04	0,30	12,29	2,54
Mo	3,13	0,02	0,51	0,71	2,83
Nb	6,04	0,06	0,50	2,52	6,14
Ni	0,60	3,91	0,46	30,09	5,42
Pb	<0,5	3,42	0,21	23,81	6,93
Rb	0,96	5,75	0,36	93,73	37,71
Sb	<0,5	3,68	0,25	59,57	11,91
Sc	0,74	5,30	0,37	92,14	30,29
Se	<0,5	7,45	0,48	30,60	11,42
Sn	<0,5	3,57	0,34	57,18	2,55
Sr	<0,5	4,37	0,38	67,12	5,29
Та	<0,5	5,48	0,45	80,02	20,17
Th	0,91	3,52	0,26	72,43	5,83
T1	0,91	4,43	0,22	185,11	11,77
U	0,71	4,98	0,38	82,30	12,50
V	<0,5	3,50	0,30	142,01	9,16
W	<0,5	2,78	0,33	144,06	10,39
Zn	<0,5	4,93	0,41	153,92	23,44
Zr	0,92	5,60	0,63	54,97	14,76
	-	ETR (ppm)		
Ce	5,87	3,92	5,25	11,17	9,77
Dy	0,25	0,21	0,45	0,56	1,35
Er	0,30	0,32	0,20	0,41	0,52
Eu	0,22	0,17	0,16	0,28	0,26
Gd	0,48	0,14	0,32	1,10	1,09
Но	0,11	0,10	0,10	0,13	0,15
La	2,88	2,41	3,13	6,04	5,80
Lu	0,03	0,03	0,02	0,06	0,06
Nd	3.09	1.31	2.83	6.14	5.09
Pr	0.71	0.42	0.68	1.36	1.19
Sm	0 44	0.46	0.41	1 24	1 00
Th	0.07	0.06	0.07	0 1 2	0.16
Tm	0.02	0.04	0.01	0.07	0.07
	0,05	0,04	2.64	4.02	5,07
Ĭ V1	2,70	3,0Z	3,04	4,30	3,00
	U,33	U,13	U,20	U,41	U,03
$E I K^+ Y$	1/,38393/1/	13,33909394	17,54575213	34,01308339	32,/39329/6
$(Eu/Eu^*)Sn$ (Dr/Dr*)Sr	2,308034284	2,095843493	2,010023048	1,402459373	1,39392/2/6
$(\Gamma_{1}/\Gamma_{1})S_{1}$	0,9/010104	1,00913020	1,023911379	0,9079712	0,2004/4343
(Ce/Ce ⁻)Sn	0,7430881/2	0,00/031081	0,032029930	0,077/8/40	0,030198270